Melbourne researchers develop safer and more effective 'aspirin'

April 18, 2005

Monash University researchers and staff of the Melbourne-based biotechnology company Cerylid Biosciences Ltd, have discovered and developed a new class of anti-clotting drugs that appears to be more effective than aspirin at preventing disease-causing blood clots and has fewer side effects.

Heart attack and stroke are the leading cause of death and disability in the western world and result in the death of about 50,000 Australians each year.

They are typically caused by blood clots that block blood flow to the heart or brain. Patients (except those stroke patients whose illness is caused by bleeding into the brain) are usually treated with aspirin, but this can increase the risk of bleeding and lead to life-threatening haemorrhages.

Associate Professor Shaun Jackson, from the Australian Centre for Blood Diseases at Monash, said this new class of drugs, called PI 3-kinase inhibitors, may prove to be vitally important in treating heart attack and stroke patients by stopping formation of the problem-causing blood clots without causing excessive bleeding.

"Aspirin is the most widely used anti-clotting drug , however it is only effective at preventing fatal heart attack and stroke for about one in four patients," Dr Jackson said. "There is a major need for safer and more effective anti-clotting drugs. The 'holy grail' in the field is a drug that prevents disease-causing clots whilst not increasing the risk of bleeding."

Animal studies have shown that the drugs, developed by Dr Jackson and colleagues at the Department of Pharmacology at the University of Melbourne, Cerylid Biosciences and the University College of London, do not increase the risk of bleeding.

Phase I trials in human volunteers have also yielded promising results.

The drugs were developed after Dr Jackson and colleagues identified the mechanism that promotes the formation of pathological blood clots (clots that lead to heart attack or stroke) and how it differed from the mechanisms involved in normal blood clotting.

Their research is published today in the international journal Nature Medicine.

Dr Jackie Fairley, CEO of Cerylid Biosciences, said it was too early to say if the drugs would replace aspirin in treating heart attack and stroke but that at this stage in their development, they had enormous potential.

Commercial rights to these anti-thrombotic compounds are held by Cerylid Biosciences. The company, which holds a number of patents over the compounds and associated technology, will take its second-generation PI3-kinase inhibitor, CBL1309, into clinical trials later this year.
-end-
Who: Scientists involved in developing the drug and a heart attack patient

Where: Australian Centre for Blood Diseases, 6th floor, Burnet building, Alfred Medical Research and Education Precinct, corner Punt Road and Commercial Road, Prahran.

When: 10am, Monday 18 April

For more information contact: Monash University - Ms Penny Fannin on +61 3 9905 5828 or +61 417 125 700. Cerylid Biosciences - Ms Rebecca Christie, Buchan Consulting, +61 417 382 391

Research Australia

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.