First matter

April 18, 2005

When the first matter came into being right after the big bang, what was it like? It may not have been quite as scientists have been describing it. That is one of the possibilities raised by four international teams of researchers that are about to publish important results three years into an experiment to recreate the primordial matter of the universe. Weizmann Institute scientists are among those who participated in the creation of matter that may be the "quark-gluon plasma" thought to be the first matter in the universe.

Scientists studying the unique physical properties of the quark-gluon plasma attempted to recreate the primordial matter using an accelerator, called RHIC, built especially for this purpose at the Brookhaven National Laboratory on Long Island, New York. The RHIC creates two beams of gold ions and accelerates them one towards the other, causing a head-on collision. The power of the collisions (about 40 trillion electron volts, also termed 40 tera electron volts) turns part of the beams' kinetic energy into various particles (a process described by Einstein's well-known equation E=mc2).

The first stage in the creation of these new particles, like the first stage of the creation of matter in the Big Bang, is thought to be the quark-gluon plasma. In this stage, the jets of blazing matter that dispersed in all directions in the first few fractions of a second in the existence of the universe contained a mixture of free quarks and gluons. Later on, when the universe cooled down a bit and became less dense, the quarks and gluons got "organized" into various combinations that created more complex particles called hadrons, a group that includes protons and neutrons. Since then, in fact, quarks or gluons have not existed as free particles in the universe.

But, while many of the experimental results fit in with predictions of how particles in the quark gluon plasma should behave, others have been a surprise. For instance, some analyses of the data show the plasma, created at a heat up to 150,000 times hotter than the center of the sun, behaves not as a super-hot gas, as expected, but more like a liquid. The Weizmann Institute scientists participated in the experiment known as "PHENIX," carried out by an international team of 460 physicists from 12 countries. A number of the particle detectors installed for the original PHENIX experiment were designed and built by Prof. Itzhak Tserruya of the Weizmann Institute's Particle Physics Department and his team. These detectors are capable of providing three-dimensional information on the precise location of the particles ejected from the collision area. The particles' direction, together with their energy and identity, help characterize the matter's properties within the collision area. The team is now working on an upgrade of the PHENIX set-up that entails the addition of a new detector, called the Hadron Blind Detector, which will allow scientists to focus on specific particle pairs. These particles are electrons and their antimatter opposites, called positrons. When they show up in pairs, they can give the scientists valuable clues as to the processes taking place in the matter. The new detectors are now in the construction phase, and Tserruya hopes to install them in time for the new experiments next year.
Prof. Itzhak Tserruya's research is supported by the Nella and Leon Benoziyo Center for High Energy Physics and the Center of Scientific Excellence.

Prof. Tserruya is the incumbent of the Samuel Sebba Professorial Chair of Pure and Applied Physics.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

American Committee for the Weizmann Institute of Science

Related Big Bang Articles from Brightsurf:

Do big tadpoles turn into big frogs? It's complicated, study finds
University of Arizona researchers studied the evolution of the body sizes of frogs and their tadpoles.

A 'bang' in LIGO and Virgo detectors signals most massive gravitational-wave source yet
Researchers have detected a signal from what may be the most massive black hole merger yet observed in gravitational waves.

Analysis: Health sector, big pharma spent big on lobbying for COVID-19 funding
To date, Congress has authorized roughly $3 trillion in COVID-19 relief assistance -- the largest relief package in history.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?

Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.

APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.

Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.

The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Read More: Big Bang News and Big Bang Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to