Nav: Home

Detecting malaria early to save lives: New optical technique promises rapid and accurate diagnosis

April 18, 2012

WASHINGTON, April 18--Correctly and quickly diagnosing malaria is essential for effective and life-saving treatment. But rapid detection, particularly in remote areas, is not always possible because current methods are time-consuming and require precise instrumentation and highly skilled microscopic analysis. Now, a promising new optical imaging system, described in a paper published today in the Optical Society's (OSA) open-access journal Biomedical Optics Express, may make the diagnosis of this deadly disease much easier, faster, and more accurate.

The new system, developed by an international team of researchers, uses "speckle imaging," an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells. By comparing the apparently random scattering (speckling) of light as it builds up from multiple images, a clear statistical pattern emerges that identifies cells that harbor the parasite responsible for malaria. The team presents its preliminary results involving 25 cell samples (12 healthy, 13 infected) in the Biomedical Optics Express paper.

"A new diagnostic tool is urgently needed," notes Dan Cojoc, Ph.D., lead author of the study and a researcher at the Materials Technology Institute, National Research Council in Trieste, Italy. "With a fast, portable, low-cost, and accurate diagnostic tool, physicians can confidently and quickly administer the correct therapy."

According to the researchers, this timely diagnosis maximizes the likelihood of successful, life-saving treatment. It also minimizes the chances that inappropriate therapy will be given, which would help combat the growing problem of drug resistant malaria.

Malaria is most common in warm, wet climates where mosquitos thrive. It claims nearly one million lives a year, mostly of African children.

A Faster Path to Diagnosis

The current diagnostic gold standard for malaria, Giemsa-stained blood smear, uses optical microscopy to identify different species of the malaria agent, Plasmodium, in blood samples. This technique requires skilled medical professionals trained to identify the telltale signs of the parasite throughout its life cycle and its population density in the bloodstream.

In an effort to find a more effective means of detection, Cojoc's team of biophysics researchers in Italy joined forces with malaria experts from Israel and Spain. Together they turned to speckle imaging, because of its ability to construct a statistically significant picture, as a new way to improve the diagnosis of malaria. It's called speckling because of light's wave-like ability to brighten as waves combine and fade as they cancel. The resulting patterns have a distinctive speckled pattern.

The specific technique the researchers used is called Secondary Speckle Sensing Microscopy. By applying this imaging technique to an automated high-throughput system, the researchers were able to deliver results in as little as 30 minutes. They did so with a high rate of accuracy and without the need for highly trained technicians and a well-equipped hospital laboratory. The current time to diagnosis in most African medical centers is typically between 8-10 hours.

Speckling to Paint a Clearer Picture

Secondary Speckle Sensing Microscopy begins with illuminating red blood cells with a tilted laser beam. This produces a time-varied speckle pattern field based on the cells' thermal vibration and the movement of their membranes -- traits that differ in healthy and diseased states. The speckle patterns are inspected under the microscope and recorded on a camera at a high frame rate. Using two automated analytical methods -- "fuzzy logic" and "principal component analysis" -- scientists scour a set of speckle parameters to extract statistical information about changes in red blood cells' membranes and their flickering movements. Scientists then make a diagnosis based on statistical correlations in speckle patterns between healthy and diseased cells.

While these preliminary results are encouraging, the investigators note that further study is needed to validate the results and further refine the technique. If the positive outcomes hold up, field studies or clinical trials of the new method might be deployed as early as 2013.
-end-
Paper: "Toward fast malaria detection by secondary speckle sensing microscopy," Biomedical Optics Express, Vol. 3, Issue 5, pp. 991-1005 (2012).

EDITOR'S NOTE: Images depicting the Secondary Speckle Sensing Microscopy technique are available to members of the media upon request. Email Angela Stark, astark@osa.org.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/BOE.

About OSA

Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

The Optical Society

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
More Malaria News and Malaria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.