Nav: Home

Nanomaterial to drive new generation of solar cells: ANU media release

April 18, 2016

Physicists have discovered radical new properties in a nanomaterial which opens new possibilities for highly efficient thermophotovoltaic cells, which could one day harvest heat in the dark and turn it into electricity.

The research team from the Australian National University (ARC Centre of Excellence CUDOS) and the University of California Berkeley demonstrated a new artificial material, or metamaterial, that glows in an unusual way when heated.

The findings could drive a revolution in the development of cells which convert radiated heat into electricity, known as thermophotovoltaic cells.

"Thermophotovoltaic cells have the potential to be much more efficient than solar cells," said Dr Sergey Kruk from the ANU Research School of Physics and Engineering.

"Our metamaterial overcomes several obstacles and could help to unlock the potential of thermophotovoltaic cells."

Thermophotovoltaic cells have been predicted to be more than two times more efficient than conventional solar cells. They do not need direct sunlight to generate electricity, and instead can harvest heat from their surroundings in the form of infrared radiation.

They can also be combined with a burner to produce on-demand power or can recycle heat radiated by hot engines.

The research is published in Nature Communications.

The team's metamaterial, made of tiny nanoscopic structures of gold and magnesium fluoride, radiates heat in specific directions. The geometry of the metamaterial can also be tweaked to give off radiation in specific spectral range, in contrast to standard materials that emit their heat in all directions as a broad range of infrared wavelengths. This makes it ideal for use as an emitter paired with a thermophotovoltaic cell.

The project started when Dr Kruk predicted the new metamaterial would have these surprising properties. The ANU team then worked with scientists at the University of California Berkeley, who have unique expertise in manufacturing such materials.

"To fabricate this material the Berkeley team were operating at the cutting edge of technological possibilities," Dr Kruk said.

"The size of individual building block of the metamaterial is so small that we could fit more than twelve thousand of them on the cross-section of a human hair."

The key to the metamaterial's remarkable behaviour is its novel physical property, magnetic hyperbolic dispersion. Dispersion describes the interactions of light with materials and can be visualized as a three-dimensional surface representing how electromagnetic radiation propagates in different directions. For natural materials, such as glass or crystals the dispersion surfaces have simple forms, spherical or ellipsoidal.

The dispersion of the new metamaterial is drastically different and takes hyperbolic form. This arises from the material's remarkably strong interactions with the magnetic component of light.

The efficiency of thermovoltaic cells based on the metamaterial can be further improved if the emitter and the receiver have just a nanoscopic gap between them. In this configuration, radiative heat transfer between them can be more than ten times more efficient than between conventional materials.
-end-


Australian National University

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...