Nav: Home

Researchers find possible treatment for suppressed immunity from spine injuries

April 18, 2016

CINCINNATI - Scientists report in Nature Neuroscience they have identified an underlying cause of dangerous immune suppression in people with high level spinal cord injuries and they propose a possible treatment.

In the journal's April 18 online edition, researchers at Cincinnati Children's Hospital Medical Center and Wexner Medical Center at The Ohio State University write that spinal cord injuries higher than thoracic level 5 (T5) cause autonomic nervous system circuitry to develop a highly adaptable state of plasticity. The autonomic nervous system controls bodily functions that are not consciously directed - like breathing, heartbeat, digestion and immune function.

As the body rushes to react to spinal cord damage, new but abnormal nervous system circuitry starts to form, according to the authors. They show that in mouse models of spinal cord injury, this aberrant nervous system circuitry causes responses that extend beyond thoracic spinal segments, which in uninjured mice would normally feed nerves to secondary lymphoid tissues that help generate immune cells. Because of this, abnormal spinal interneurons are activated by the bladder and/or bowel. This results in formation of an exaggerated network of neural circuitry that activates an anti-inflammatory and immune suppressive reflex.

"Infection, a consequence of immune suppression, is the leading cause of death for people with spinal cord injuries," said Yutaka Yoshida, PhD, co-lead author and a scientist in the Division of Developmental Biology at Cincinnati Children's. "Patients and mouse models of spinal injury also are subject to autonomic dysreflexia, a potentially fatal clinical syndrome marked by episodes of high blood pressure."

People with high-level spinal cord injury develop what is known as spinal cord injury-induced immune suppression syndrome (SCI-IDS). In the study, mouse models of high spinal cord injury have atrophied spleens (a secondary organ that produces white blood cells) and show signs of leukopenia (low white blood cell count).

Co-lead author Phillip Popovich, PhD, professor of Neuroscience and director of the Center for Brain and at Ohio State, said that "this abnormal spinal cord circuitry likely causes chronic immune suppression and increases the chance that people with spinal cord injuries will suffer from complications caused by common infections, such as pneumonia."

In an effort to develop a possible treatment to stop immune suppression syndrome, the researchers tested chemogenetic agents in their laboratory mouse models. Chemogenetics involves manipulating receptors that are on the surface of cells and either activate or silence these cells. The use of chemogenetics creates the ability to exert very selective pharmacologic control over a variety of cell-signaling processes.

In the instance of mouse high spinal cord injury models, the researchers used chemogenetics to silence signaling transmissions from newly forming interneurons that trigger the immune suppression reflex. Because the newly forming nerves had specific genetic signatures, the scientists were able to control these neurons using a precisely targeted chemogenetic silencer (hM4Di-DREADD).

Chemogenetic silencing reversed the immune suppressive reflex in spinal injured mice. Atrophy in the animals' spleens was reversed and white blood cell counts increased, the researchers report.

The researchers continue to test and refine the use of chemogenetic silencing to treat SCI-IDS. They caution that the experimental treatment method remains years away from testing in people with spinal cord injury.
-end-
Also collaborating on the study was first author Masaki Ueno, a member of Yoshida's lab at Cincinnati Children's and also the Japan Science and Technology Agency.

Funding support for the study came in part from: the National Institute of Neurological Disorders and Stroke (NS083942, NS093002); the Ray W. Poppleton Endowment; PRESTO; the JSPS Postdoctoral Fellowships for Research Abroad and the KANAE Foundation for the Promotion of Medical Science.

About Cincinnati Children's

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S.News and World Report's 2015 Best Children's Hospitals. It is also ranked in the top 10 for all 10 pediatric specialties, including a #1 ranking in pulmonology and #2 in cancer and in nephrology. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati's College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.

Cincinnati Children's Hospital Medical Center

Related Spinal Cord Injury Articles:

Spinal cord injury patients face many serious health problems besides paralysis
Spinal cord patients are at higher risk for cardiovascular disease; pneumonia; life-threatening blood clots; bladder, bowel and sexual dysfunction; constipation and other gastrointestinal problems; pressure ulcers; and chronic pain, according to a report published in the journal Current Neurology and Neuroscience Reports.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Health behaviors and management critical for spinal cord injury patients
U-M researcher is the co-editor of a two-part series of Topics in Spinal Cord Injury Rehabilitation focused on recent research studies about health behaviors and health management in individuals with spinal cord injury.
First clinical guidelines in Canada for pain following spinal cord injury
Researchers at Lawson Health Research Institute are the first in Canada to develop clinical practice guidelines for managing neuropathic pain with patients who have experienced a spinal cord injury.
Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences.
Discovery in roundworms may one day help humans with spinal cord injury and paralysis
A newly discovered pathway leading to the regeneration of central nervous system (CNS) brain cells (neurons) in a type of roundworm (C. elegans) sheds light on the adult human nervous system's ability to regenerate.
Protective effect of genetically modified cord blood on spinal cord injury in rats
Researchers of Kazan Federal University genetically modified cord blood which managed to increase tissue sparing and numbers of regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury.
Aging diminishes spinal cord regeneration after injury
Researchers at University of California, San Diego School of Medicine and University of British Columbia (UBC) have determined that, in mice, age diminishes ability to regenerate axons, the brain's communication wires in the spinal cord.
Neuroscientific evidence that motivation promotes recovery after spinal cord injury
The research team led by Associate Professor Yukio Nishimura, National Institute for Physiological Sciences, Natural Institutes of Natural Sciences, found that the nucleus accumbens, that control motivation in the brain, activates the activity of the motor cortex of the brain, and then promotes recovery of motor function during the early stage of recovery after spinal cord injury.
New approach to spinal cord and brain injury research
Many an injury will heal, but the damaged spinal cord is notoriously recalcitrant.

Related Spinal Cord Injury Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...