Nav: Home

RNA in stop-motion

April 18, 2016

You are an animator (a specialist who creates cartoons) who works in stop-motion. This technique involves patiently lining up many pictures of a subject that changes slightly position in each picture, so as to have a coherent and continuous sequence of frames. For those who know him, Pingu, the mischievous and adventurous penguin, is an example of stop-motion. In the case of RNA, though, rather than plasticine figures you have a huge database of general images, something like Flickr. You need to create an animation of a smile, from the time the mouth is in neutral position to when the smile reaches its maximum extent. You extract from the database all the images containing a human face and you isolate the mouth from them. The fact that each frame depicts a different person will only make your animation more creative. All you have to do is arrange your images into the right sequence, but as the number of images to be included increases, the more time-consuming and laborious this task becomes. And what if a program existed that was capable of arranging them automatically based on their "similarity"? That is what some scientists actually did although, instead of a smile and Flickr, they used RNA and a huge international database of crystallographic images, the Protein Data Bank (PDB).

Giovanni Bussi, SISSA professor, and his colleagues are studying RNA dynamics, that is, the way this molecule takes on different forms in three-dimensional space. RNA is a molecule made up of a long chain of nucleotides (in fact, sometimes in the form of a double helix of paired strands, like DNA), which is very important in many cell processes, including gene transcription and regulation. RNA is found in many conformations, with varying dimensions and functions. Some typical, recurring structures are especially important, which is why scientists are studying them, in part in an attempt to understand how the molecule passes from one form to another. One important structure is the tetraloop, a small piece of RNA consisting of 4 nucleotides folded over to form a loop. Bussi, who coordinated the work of the first author, Sandro Bottaro, SISSA research scientist, and Alejandro Gil-Ley, SISSA student, decided to adopt a really clever technique, based on a sort of molecular stop-motion.

"We usually work with computer simulations, but in this case we started from experimental data to get a real image of the molecule", explains Bussi. "So we went through the PDB, which contains crystallographic images of a huge number of molecules. A crystallographic image is a kind of 3D image of a molecule". Bussi and colleagues searched this huge database for images of RNA and in particular for images of certain sequences formed by 4 specific nucleotides. "In general, the 'photos' depict a much larger molecule" (a bit like the case of the smile, which is generally a part of a larger portrait), explains Bottaro. "Once all the pictures had been isolated, we had the problem of sorting them". Bussi and colleagues had an ace up their sleeve. "Some time ago we devised a measure able to provide an estimate of similarity between RNA conformations" says Bussi. The results of this work had been published in a previous paper. "So it was thanks to this algorithm that we were able to arrange the images into coherent sequences".

That way, the researchers obtained animations showing the transition of the strands from an elongated conformation to a tetraloop. "The important thing is that we did it using images of observed, hence real and possible, conformations", concludes Bussi. The technique is naturally "transferable" in the sense that it can be applied to other, different RNA structures as well as to other proteins and molecules, provided that one has a sufficiently large database of images.

International School of Advanced Studies (SISSA)

Related Rna Articles:

How RNA formed at the origins of life
A single process for how a group of molecules called nucleotides were made on the early Earth, before life began, has been suggested by a UCL-led team of researchers.
RNA and longevity: Discovering the mechanisms behind aging
Korean researchers suggests that NMD-mediated RNA quality control is critical for longevity in the roundworm called C. elegans, a popularly used animal for aging research.
Don't kill the messenger RNA
Success of new protein-making therapy for hemophilia opens door for treating many other diseases.
RNA modification important for brain function
Researchers at the Institute of Molecular Biology (IMB) and Johannes Gutenberg University Mainz (JGU) have shown that a new way of regulating genes is vital for the activity of the nervous system.
Atlas of the RNA universe takes shape
In the last few years, small snippets of RNA, which may have played a key role in the planet's earliest flickering of life, have been uncovered and examined in great detail.
Punching cancer with RNA knuckles
Researchers achieved an unexpected eye-popping reduction of ovarian cancer during successful tests of targeted nanohydrogel delivery in vivo in mice.
Gatekeeping proteins to aberrant RNA: You shall not pass
Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus.
Short RNA molecules mapped in single cell
Researchers at Karolinska Institutet have measured the absolute numbers of short, non-coding, RNA sequences in individual embryonic stem cells.
Watching RNA fold
New technology takes a nucleotide-resolution snapshot of RNA as it is folding, which could lead to discoveries in biology, gene expression, and disease.
Bacteria: Third RNA binding protein identified
Pathogenic bacteria use small RNA molecules to adapt to their environment.

Related Rna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.