Nav: Home

UCLA scientists reveal how osteopontin ablation ameliorates muscular dystrophy

April 18, 2016

Removing an immunomodulatory protein called osteopontin improves the symptoms of mice with muscular dystrophy by changing the type of macrophages acting on damaged muscle tissue, according to a paper published in The Journal of Cell Biology. The study, "Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype" by Joana Capote and colleagues, adds support to the idea that osteopontin inhibitors could be used to treat patients with Duchenne muscular dystrophy (DMD).

DMD is a progressive, and ultimately fatal, muscle degenerative disease caused by mutations in the gene encoding a protein called dystrophin. These mutations weaken muscle fibers so that they are easily and repeatedly damaged during muscle contraction. Immune cells help to repair this damage, but over time, they can also induce fibrosis, or scarring, which reduces muscle function still further.

Osteopontin is a signaling protein that modulates immune responses and is highly up-regulated in the muscles of DMD patients. A team of researchers led by Melissa Spencer and Irina Kramerova at the David Geffen School of Medicine at UCLA previously demonstrated that removing osteopontin from mdx mice, which have DMD-like symptoms, reduced fibrosis and boosted muscle repair and regeneration. How the loss of osteopontin caused these improvements remained unclear, however, so the researchers now examined the types of immune cell present in mdx mouse muscles in the presence or absence of osteopontin.

The researchers found that removing osteopontin changes the type of macrophage formed in response to muscle damage. In the absence of osteopontin, mdx mouse muscles contained more M2c macrophages, which are thought to stimulate tissue repair, and fewer M1 and M2a macrophages, which are considered to be promoters of inflammation and fibrosis. Accordingly, removing osteopontin caused the macrophages present in mdx mouse muscles to produce multiple pro-regenerative factors, and the muscles themselves grew in both size and strength.

Though osteopontin ablation didn't fully restore the function of mdx mouse muscles, the study suggests that drugs targeting the immunomodulatory protein could be beneficial for DMD patients. "We anticipate that osteopontin inhibitors could be used in combination with other therapeutic agents to slow disease progression and improve muscle function," Spencer says.
-end-
Capote, J., et al. 2016. J Cell Biol.http://dx.doi.org/10.1083/jcb.201510086

About The Journal of Cell BiologyThe Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on submitted manuscripts are made by research-active scientists in conjunction with our in-house scientific editors. JCB provides free online access to many article types immediately, with complete archival content freely available online since the journal's inception. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a Creative Commons license. For more information, please visit jcb.org.

Rockefeller University Press

Related Muscular Dystrophy Articles:

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.
Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.
GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.
Not all Europeans receive the same care for Duchenne muscular dystrophy
Duchenne muscular dystrophy (DMD), a progressive muscle disease affecting one in 3,800-6,300 live male births and leads to ambulatory loss, respiratory problems, cardiomyopathy, and early death of patients in their 20s or 30s.
A vitamin could help treat Duchenne muscular dystrophy
Researchers are working on a new strategy to combat one of the most severe forms of muscular dystrophy.
New research increases understanding of Duchenne muscular dystrophy
A new paper, co-written by faculty at Binghamton University, State University of New York, increases the understanding of Duchenne muscular dystrophy (DMD) -- one of the most common lethal genetic disorders -- and points to potential therapeutic approaches.
Cause of heart arrhythmia in adult muscular dystrophy clarified
An international joint research group found that the cause of heart arrhythmia in myotonic dystrophy was RNA abnormalities in the sodium channel in the heart, clarifying the symptom's mechanism.
New muscular dystrophy drug target identified
Scientists at the University of Liverpool have discovered that muscle cells affected by muscular dystrophy contain high levels of an enzyme that impairs muscle repair.
New insights into muscular dystrophy point to potential treatment avenues
Certain stem cells in our bodies have the potential to turn into either fat or muscle.
Decoding sugar molecules offers new key for combating muscular dystrophy
A group of Japanese scientists have succeeded in decoding a sugar molecule and clarifying a mechanism linked to muscular dystrophy.

Related Muscular Dystrophy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...