Nav: Home

Derailed train of thought? Brain's stopping system may be at fault

April 18, 2016

Have you had the experience of being just on the verge of saying something when the phone rang? Did you then forget what it is you were going to say? A study of the brain's electrical activity offers a new explanation of how that happens.

Published in Nature Communications, the study comes from the lab of neuroscientist Adam Aron at the University of California San Diego, together with collaborators at Oxford University in the UK, and was led by first author Jan Wessel, while a post-doctoral scholar in the Aron Lab. The researchers suggest that the same brain system that is involved in interrupting, or stopping, movement in our bodies also interrupts cognition -- which, in the example of the phone ringing, derails your train of thought.

The findings may give insights into Parkinson's disease, said Aron, a professor of psychology in the UC San Diego Division of Social Sciences, and Wessel, now an assistant professor of psychology and neurology at the University of Iowa. The disease can cause muscle tremors as well as slowed-down movement and facial expression. Parkinson's patients may also present as the "opposite of distractible," often with a thought stream so stable that it can seem hard to interrupt. The same brain system that is implicated in "over-stopping" motor activity in these patients, Aron said, might be also be keeping them over-focused.

The current study focuses particularly on one part of the brain's stopping system -- the subthalamic nucleus (STN). This is a small lens-shaped cluster of densely packed neurons in the midbrain and is part of the basal ganglia system.

Earlier research by Aron and colleagues had shown that the STN is engaged when action stopping is required. Specifically, it may be important, Aron said, for a "broad stop." A broad stop is the sort of whole-body jolt we experience when, for example, we're just about to exit an elevator and suddenly see that there's another person standing right there on the other side of the doors.

The study analyzes signals from the scalp in 20 healthy subjects as well as signals from electrode implants in the STN of seven people with Parkinson's disease. (The STN is the main target for therapeutic deep brain stimulation in Parkinson's disease.)

All the volunteers were given a working memory task. On each trial, they were asked to hold in mind a string of letters, and then tested for recall. Most of the time, while they were maintaining the letters in mind, and before the recall test, they were played a simple, single-frequency tone. On a minority of trials, this sound was replaced by a birdsong segment - which is not startling like a "bang!" but is unexpected and surprising, like a cell phone chirping suddenly. The volunteers' brain activity was recorded, as well as their accuracy in recalling the letters they'd been shown.

The results show, the researchers write, that unexpected events manifest the same brain signature as outright stopping of the body. They also recruit the STN. And the more the STN was engaged - or the more that part of the brain responded to the unexpected sound - the more it affected the subjects' working memory and the more they lost hold of what they were trying to keep in mind.

"For now," said Wessel, "we've shown that unexpected, or surprising, events recruit the same brain system we use to actively stop our actions, which, in turn, appears to influence the degree to which such surprising events affect our ongoing trains of thought."

A role for the STN in stopping the body and interrupting working memory does fit anatomical models of how the nucleus is situated within circuitry in the brain. Yet more research is needed, the researchers write, to determine if there's a causal link between the activity observed in the STN and the loss in working memory.

"An unexpected event appears to clear out what you were thinking," Aron said. "The radically new idea is that just as the brain's stopping mechanism is involved in stopping what we're doing with our bodies it might also be responsible for interrupting and flushing out our thoughts."

A possible future line of investigation, Aron said, is to see if the STN and associated circuitry plays a role in conditions characterized by distractibility, like Attention Deficit Hyperactivity Disorder. "This is highly speculative," he said, "but it could be fruitful to explore if the STN is more readily triggered in ADHD."

Wessel added: "It might also be potentially interesting to see if this system could be engaged deliberately - and actively used to interrupt intrusive thoughts or unwanted memories."

If further research bears out the connection suggested by the current study, between the STN and losing your train of thought following an unexpected event, the researchers say it might be that it is an adaptive feature of the brain, something we evolved long ago as a way to clear our cognition and re-focus on something new. Aron suggests this example: You're walking along one morning on the African Savannah, going to gather firewood. You're daydreaming about the meal you're going to prepare when you hear a rustle in the grass. You make a sudden stop - and all thoughts of dinner are gone as you shift your focus to figure out what might be in the grass. In this case, it's a good thing to forget what you had been thinking about.
-end-
Aron and Wessel's co-authors on the paper are: Ned Jenkinson of John Radcliffe Hospital at the University of Oxford, as well as the University of Birmingham (UK) and John-Stuart Brittain, Sarah H.E.M. Voets and Tipu Z. Aziz, also of Radcliffe Hospital at Oxford.

University of California - San Diego

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab