Nav: Home

Researchers transmit data through animal tissues at HD video rates via ultrasound

April 18, 2016

Using animal tissue samples--store-bought pork loin and beef liver--researchers from the University of Illinois at Urbana-Champaign have demonstrated the possibility of real-time video-rate data transmission through tissue for in-body ultrasonic communications with implanted medical devices.

"Using ultrasonic signals, we envision the ability to not only control implanted medical devices in the body but to provide live streaming of high-definition video from devices inside the body," explained Andrew Singer, the Fox Family Professor in the Department of Electrical and Computer Engineering at Illinois. "You can imagine a device that is swallowed for the purposes of imaging the digestive tract but with the capability for the HD video to be continuously streamed live to an external screen and the orientation of the device controlled wirelessly and externally by the physician. This may seem like science fiction today, but at the root of science fiction are questions about what is possible. We wanted to show that it was possible, and engineering is about always reaching toward that adjacent possible."

In this study--reported in a paper, "Mbps Experimental Acoustic Through-Tissue Communications: MEAT-COMMS" posted on arXiv.org--the researchers demonstrated that improved signal processing techniques can provide high data rates (>30Mbps) with low error rates through tissues at frequencies that would allow propagation through the body (<10 MHz).

"To our knowledge, this is the first time anyone has ever sent such high data rates through animal tissue," Singer added. "These data rates are sufficient to allow real-time streaming of high definition video, enough to watch Netflix, for example, and to operate and control small devices within the body."

To date, cardiac patients represent the largest segment of patients making use of wireless telemetry from implanted medical devices. However the number and types of applications are increasing rapidly for implanted pacemakers and defibrillators, glucose monitors and insulin pumps, intracranial pressure sensors, epilepsy control, ingestible cameras for imaging the digestive track, and many more applications.

"This work explores the use of such methods for communications through tissue for potential biomedical applications, using the tremendous bandwidth available in commercial medical ultrasound transducers," said Michael Oelze, associate professor of electrical and computer engineering at Illinois. "The increased demand for these devices and the opening up of new applications for implanted medical devices will continue to amplify the role of these devices for patient care and management of disease."

For implanted medical devices, sensor transmission is characterized by low peak power and low duty cycle to reduce the potential for adverse bio-effects and to extend battery life. Other approaches seek to recharge small batteries in these devices wirelessly by converting energy from a transmitted signal from an external device (as either electromagnetic or ultrasonic wave energy) into electro-chemical storage. Therefore, the use of wave propagation for communication and interaction with implanted medical devices is an integral part of current and future device development.

Currently, most implanted medical devices use RF electromagnetic waves to communicate through the body. The Federal Communications Commission (FCC) regulates the bandwidths that can be used for RF electromagnetic wave propagation available to implanted medical devices. For example, the Medical Device Radiocommunication Service (MDRS) designates frequencies of operation ranging from 401-406 MHz. The corresponding maximum bandwidth allowed is 300 kHz, which inherently limits the communication rates of these devices, and is reported in current devices to be limited to a maximum of 50 kb/s.

"For underwater applications, radio-frequency (RF) electromagnetic communications has long since been supplanted by acoustic communication," Singer noted. "Acoustic or ultrasonic communication is the preferred communication means underwater because sound (pressure) waves exhibit dramatically lower losses than RF and can propagate tremendous distances for signals of modest bandwidth."

Beyond bandwidth restrictions, the main limitation for using RF electromagnetic waves in the body is loss of signal that occurs because of attenuation in the body. Losses in soft tissues are comparable to losses in salt water, which is a major constituent of soft tissues and is a high loss medium for propagation of RF electromagnetic waves. Soft tissues each have their respective high loss dielectric properties which result in scattering and multipath of signals as well as loss. In order to overcome these losses, higher power must be used and this can result in heating of tissues due to absorption.

Adverse bio-effects associated with radiation of electromagnetic waves in the body have not been studied in detail and long term biological effects of heating and non-thermal effects, such as purported increased risk of cancer or other cell damage, warrant additional study the researchers said.

"These perceived risks can be as important as the actual risks in deterring progress," said Oelze. "These issues have impeded progress in developing intra-body wireless networks, allowing devices to communicate with each other through the body and with external devices."

The researchers have received a provisional patent application on the high-definition ultrasonic technology. They will be presenting their findings at the 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, this July in Edinburgh, UK.
-end-


University of Illinois College of Engineering

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.