Nav: Home

HAWC Gamma-ray Observatory reveals new look at the very-high-energy sky

April 18, 2016

The United States and Mexico constructed the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory to observe some of the most energetic phenomena in the known universe--the aftermath when massive stars die, glowing clouds of electrons around rapidly spinning neutron stars, and supermassive black holes devouring matter and spitting out powerful jets of particles. These violent explosions produce high-energy gamma rays and cosmic rays, which can travel large distances--making it possible to see objects and events far outside our own galaxy.

Today, scientists operating HAWC released a new survey of the sky made from the highest energy gamma rays ever observed. The new sky map, which uses data collected since the observatory began running at full capacity last March, offers a deeper understanding of high-energy processes taking place in our galaxy and beyond.

"HAWC gives us a new way to see the high-energy sky," said Jordan Goodman, professor of physics at the University of Maryland, and U.S. lead investigator and spokesperson for the HAWC collaboration. "This new data from HAWC shows the galaxy in unprecedented detail, revealing new high-energy sources and previously unseen details about existing sources."

HAWC researchers presented the new observation data and sky map April 18, 2016, at the American Physical Society meeting. They also participated in a press conference at the meeting.

The new sky map shows many new gamma ray sources within our own Milky Way galaxy. Because HAWC observes 24 hours per day and year-round with a wide field-of-view and large area, the observatory boasts a higher energy reach especially for extended objects. In addition, HAWC can uniquely monitor for gamma ray flares by sources in our galaxy and other active galaxies, such as Markarian 421 and Markarian 501.

One of HAWC's new observations provides a better understanding of the high-energy nature of the Cygnus region--a northern constellation lying on the plane of the Milky Way. A multitude of neutron stars and supernova remnants call this star nursery home. HAWC scientists observed previously unknown objects in the Cygnus region and identified objects discovered earlier with sharper resolution.

In a region of the Milky Way where researchers previously identified a single gamma ray source named TeV J1930+188, HAWC identified several hot spots, indicating that the region is more complicated than previously thought.

"Studying these objects at the highest energies can reveal the mechanism by which they produce gamma rays and possibly help us unravel the hundred-year-old mystery of the origin of high-energy cosmic rays that bombard Earth from space," said Goodman.

HAWC--located 13,500 feet above sea level on the slopes of Mexico's Volcán Sierra Negra--contains 300 detector tanks, each holding 50,000 gallons of ultrapure water with four light sensors anchored to the floor. When gamma rays or cosmic rays reach Earth's atmosphere they set off a cascade of charged particles, and when these particles reach the water in HAWC's detectors, they produce a cone-shaped flash of light known as Cherenkov radiation. The effect is much like a sonic boom produced by a supersonic jet, because the particles are traveling slightly faster than the speed of light in water when they enter the detectors.

The light sensors record each flash of Cherenkov radiation inside the detector tanks. By comparing nanosecond differences in arrival times at each light sensor, scientists can reconstruct the angle of travel for each particle cascade. The intensity of the light indicates the primary particle's energy, and the pattern of detector hits can distinguish between gamma rays and cosmic rays. With 300 detectors spread over an area equivalent to more than three football fields, HAWC "sees" these events in relatively high resolution.

"Unlike traditional telescopes, with HAWC we have now an instrument that surveys two-thirds of the sky at the highest energies, day and night," said Andrés Sandoval, Mexico spokesperson for HAWC.

HAWC exhibits 15-times greater sensitivity than its predecessor--an observatory known as Milagro that operated near Los Alamos, New Mexico, and ceased taking data in 2008. In eight years of operation, Milagro found new sources of high-energy gamma rays, detected diffuse gamma rays from the Milky Way galaxy and discovered that the cosmic rays hitting earth had an unexpected non-uniformity.

"HAWC will collect more data in the next few years, allowing us to reach even higher energies," said Goodman. "Combining HAWC observations with data from other instruments will allow us to extend the reach of our understanding of the most violent processes in the universe."
HAWC is a joint collaboration between the United States and Mexico that includes over 120 scientists from 25 universities and national laboratories. Goodman led a team of UMD physicists that pioneered development of the observatory and managed its construction from 2011 until 2015.

In addition to Goodman, other collaborators from the UMD Department of Physics have included associate research scientist Andrew J. Smith; postdoctoral researchers Brian Baughman, James Braun, Daniel Fiorino and Colas Rivière; and graduate students Israel Martinez Castellanos, Kristi Engel and Joshua Wood.

The National Science Foundation, the U.S. Department of Energy and the Los Alamos National Laboratory provided funding for the United States' participation in the HAWC project. The Consejo Nacional de Ciencia y Tecnología (CONACyT) is the primary funder for Mexican participation. The content of this article does not necessarily reflect the views of these organizations.

University of Maryland

Related Cosmic Rays Articles:

Study: Collateral damage from cosmic rays increases cancer risks for Mars astronauts
The cancer risk for a human mission to Mars has effectively doubled following a UNLV study predicting a dramatic increase in the disease for astronauts traveling to the red planet or on long-term missions outside the protection of Earth's magnetic field.
Physicists leapfrog accelerators with ultrahigh energy cosmic rays
An international team of physicists has developed a pioneering approach to using Ultrahigh Energy Cosmic Rays (UHECRs) -- the highest energy particles in nature since the Big Bang -- to study particle interactions far beyond the reach of human-made accelerators.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
NASA instrument to use X-rays to map an asteroid
NASA's OSIRIS-REx spacecraft will launch September 2016 and travel to the near-Earth asteroid Bennu to harvest a sample of surface material and return it to Earth for study.
Microscopic 'clocks' time distance to source of galactic cosmic rays
Most of the galactic cosmic rays reaching Earth come from nearby clusters of massive stars, according to new observations from NASA's ACE spacecraft.
New use for X-rays: A radar gun for unruly atoms
Using coherent X-rays, a new technique has been discovered for sensing motion and velocity of small groups of atoms.
Nature: KIT simulation analyzes cosmic rays
When cosmic rays hit the Earth's atmosphere, their high-energy primary particles generate an 'air shower' of secondary particles.
How skates and rays got their wings
The evolution of the striking, wing-like pectoral fins of skates and rays relied on repurposed genes, according to new research by scientists from the University of Chicago.
Study finds metal foams capable of shielding X-rays, gamma rays, neutron radiation
Research shows lightweight composite metal foams are effective at blocking X-rays, gamma rays and neutron radiation, and are capable of absorbing the energy of high impact collisions.
Using muons from cosmic rays to find fraying infrastructure
Seeking a better way to identify faulty energy infrastructure before it fails, researchers at Los Alamos National Laboratory are using subatomic particles called muons to analyze the thickness of concrete slabs and metal pipes.

Related Cosmic Rays Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...