Nav: Home

First computer program developed to detect DNA mutations in single cancer cells

April 18, 2016

Researchers at The University of Texas MD Anderson Cancer Center have announced a new method for detecting DNA mutations in a single cancer cell versus current technology that analyzes millions of cells which they believe could have important applications for cancer diagnosis and treatment. The results are published in the April 18 online issue of Nature Methods.

Existing technology, known as next-generation sequencing (NGS), measures genomes derived from millions of cells versus the newer method for single-cell sequencing, called Monovar. Developed by MD Anderson researchers, Monovar allows scientists to examine data from multiple single cells. The study was, in part, funded by MD Anderson's Moon Shots Program, an unprecedented effort to significantly reduce deaths from cancer.

"NGS technologies have vastly improved our understanding of the human genome and its variation in diseases such as cancer," said Ken Chen, Ph.D., assistant professor of Bioinformatics and Computational Biology and co-author of the Nature Methods article. "However, because NGS measures large numbers of cells, genomic variations within tissue samples are often masked."

This led to development of newer technology, called single cell sequencing (SCS), that has had a major impact in many areas of biology, including cancer research, neurobiology, microbiology, and immunology, and has greatly improved understanding of certain tumor characteristics in cancer. Monovar improves further on the new SCS's computational tools which scientists found "lacking" by more accurately detecting slight alterations in DNA makeup known as single nucleotide variants (SNVs).

"To improve the SNVs in SCS datasets, we developed Monovar," said Nicholas Navin, Ph.D., assistant professor of Genetics and co-author of the paper. "Monovar is a novel statistical method able to leverage data from multiple single cells to discover SNVs and provides highly detailed genetic data."

Chen and Navin state that Monovar will have significant translational applications in cancer diagnosis and treatment, personalized medicine and pre-natal genetic diagnosis, where the accurate detection of SNVs is critical for patient care.

This refinement of an existing technology could very well boost studies in many biomedical fields other than just cancer. The researchers believe it is a major advance for assessing SNVs in SCS datasets - crucial information for a variety of diseases.

"With the recent innovations in SCS methods to analyze thousands of single cells in parallel with RNA analysis which will soon be extended to DNA analysis, the need for accurate DNA variant detection will continue to grow," said Chen. "Monovar is capable of analyzing large-scale datasets and handling different whole-genome protocols, therefore it is well-suited for many types of studies.
-end-
Other research team members included Yong Wang, Ph.D., Genetics, and Hamim Zafar, Ph.D. and Luay Nakhleh, Ph.D., Rice University, Houston.

The study was funded by an MD Anderson Moon Shot Knowledge Gap Award, the National Institutes of Health (CA016672 and R21CA174397), the National Cancer Institute (RO1 CA172652 and RO1CA169244-01), the Andrew Sabin Family Fellowship, the Lefkofsky Family Foundation, The Bosarge Family Foundation, the H.A. and Mary K. Chapman Charitable Foundations, the Michael & Susan Dell Foundation, and an Agilent University Relations Grant.

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.