Nav: Home

Chaining up diarrhea pathogens

April 18, 2017

Vaccinations are known to protect against pathogens such as bacteria or viruses. They direct the body to form protective antibodies (IgA), and have been successfully used against some intestinal infections.

However, exactly how intestinal antibodies - known as secretory IgA - protect against infections was previously unclear. A group of researchers led by ETH Senior Assistant Emma Slack, have now used the example of salmonella-based diarrhoea to show that secretory IgA works very differently to how we previously assumed.

In a study published recently in the journal Nature, the researchers showed that vaccine-induced IgA effectively "enchained" the pathogens in the intestine: IgA binds the bacteria's daughter cells to each other during cell division. Although the enchained bacteria can continue to multiply, all their offspring remain trapped in these clumps. This clumping of genetically homogeneous bacteria prevents the attack of the intestinal tissue, accelerates the excretion of the pathogen and prevents genetic exchange between bacteria enchained in different clumps.

Agglutination only in the test tube

That antibodies and bacteria clump, a process known as agglutination, has long been known. However, this only occurs when antibodies and bacteria are present in high densities and so often come into contact with each other. "In the test tube, it happens in textbook fashion. There are high enough concentrations of antibodies and bacteria, so they often collide," says Dr. Slack.

In the intestine, however, such high pathogen densities are the exception: "this makes it much less likely that the IgA-coated bacteria will collide," explains Dr. Slack. Despite this, research has long observed that such clumps do form in the intestine - meaning there must have been another explanation for the clumping.

Bacterial growth controls clumping

Dr. Slack and her group have now demonstrated for the first time that clumps form even with a low pathogen density, and that this does not depend on the concentration of the bacteria. The driving force behind the formation of the clumps is the pathogens' growth rate. The IgA antibodies attach themselves so strongly to bacteria that they do not release them even when the pathogens divide. Thus both daughter cells remain stuck together. In this way, the IgA antibodies enchain all the offspring of a single, rapidly dividing bacterium.

Clumps hinder disease

"The clever thing about clump formation is that the antibodies don't kill the bacteria, which in the worst case could lead to a violent immune response. They simply prevent the microbes from interacting with the host, among themselves or with close relatives," says Wolf-Dietrich Hardt, Professor of Microbiology at ETH Zurich, who played a key role in the study.

Fighting intestinal infections using vaccination thus has several advantages: antibody-bacteria clumps cannot approach the intestinal wall, which prevents the intestinal mucosa from becoming inflamed. The intestine also gets rid of the clumps quickly, and after a few days they are cleared in the faeces. "The system is efficient. It is easier to get rid of a whole clump than to capture and eliminate many individual bacterial cells," says Dr. Slack.

No exchange of resistance genes

Intestinal vaccination could help to overcome the antibiotic resistance crisis. Vaccination decreases the incidence of diseases potentially requiring antibiotic usage, which would automatically reduce the development and spread of resistance to antibiotics.

IgA-driven clump formation also directly prevents genetic exchange between individual captured bacterial populations. Bacteria often exchange genes in the form of plasmids (ring-shaped DNA molecules), which frequently carry the feared antibiotic resistance genes. To exchange plasmids, however, the bacterial cells have to touch, which they can't do if they are stuck in separate clumps.

Livestock vaccination

The researchers used oral vaccines made from killed salmonella and E. coli bacteria. They suggested that this strategy could also be used against the pathogens of other intestinal diseases such as Shigella or Listeria.

The largest area of application for salmonella vaccination could be in farm animals such as pigs, which often act as a reservoir for antibiotic-resistant pathogens. Humans can become infected by contact with these animals and their raw meat. A vaccination for humans could also be feasible, which would benefit people working in disaster or epidemic areas, or those travelling in regions where bowel infections are common.
-end-


ETH Zurich

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.