Nav: Home

Rapid screening machine can read and separate protein sequences

April 18, 2017

The structural properties of proteins that could eventually become important materials for manufacturing and medicine are revealed by a novel optical technique that works rapidly to sort through amino acid sequences even inside living bacteria, according to a team of engineers.

"There remains an urgent need for fast and efficient techniques that can screen the properties of large numbers of protein sequences with minimal sample volume or in living cells," the researchers report online in the journal Analyst.

Naturally occurring proteins like silk, collagen, wool and other natural fibers are a $40 billion industry.

"There are 30 to 40 natural structural proteins that we know of," said Melik C. Demirel, Pierce Development Professor and professor of engineering science and mechanics, Penn State. "Silk is very strong, but when it's placed in water it loses its strength. Squid ring teeth proteins have similar properties, but because they evolved in a wet environment, don't have that problem."

Finding variants of naturally occurring proteins with specific characteristics is only one approach.

"The problem is when we look at mechanical properties there is an area where no natural materials have those properties," said Demirel. "Either nature did not create proteins with those characteristics or they disappeared." The proteins that interest Demirel and his team are both natural and synthetic. They are semicrystalline and the properties the team is looking for can be characterized by their crystalline structure, but crystalline structure changes as a material heats up. Standard flow cytometry lasers produce too much heat for this use.

"The problem with light is that when you shine it on an object, the object eventually heats up," said Demirel. "If we are trying to measure crystallinity, we have to do it fast enough so that it doesn't get heated up and change the crystalline structure."

The researchers are doing flow cytometry, but are using femto and pico-second lasers to inspect the proteins as they flow past in single file. The chosen proteins can then be separated from the rest. The lasers, cycling as fast as they do, do not heat up the samples quickly, so researchers can probe for the information they need before the sample heats up and the structure changes. They use a process called time-domain thermo-transmission which enables screening of proteins in milliseconds and does not kill living cells.

Besides naturally occurring proteins, the researchers are looking at synthetic proteins, specifically adapted from squid ring teeth proteins. Bacteria produce these protein strands, so a non-lethal method of categorizing them is needed. This proof-of-concept research showed that this method does work.

Demirel received a recent grant, "High-throughput screening of evolutionary biological materials," from the Defense University Research Instrumentation Program to create a machine that can do this in larger amounts. DURIP funds can only be used for the acquisition of major equipment to augment current or to develop new research capabilities in support of Department of Defense relevant research. Squid ring teeth proteins, because they function in water, may be of importance in the marine environment.
-end-
Also working on this project from Penn State were Huihun Jung and Abdon Pena-Francesch, graduate students in engineering science and mechanics; and Benjamin Allen, research associate in biochemistry and molecular biology.

Others working on the project are Patrick Hopkins, associate professor of mechanical and aerospace engineering, Chester J. Szwejkowski, graduate student in mechanical and aerospace engineering, and John A. Tomko, graduate student in materials science and engineering, University of Virginia; and Sahin Kaya Ozdemir, research associate professor of electrical and systems engineering, Washington University. The Army Research Office supported this work.

Penn State

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...