Nav: Home

Researchers describe ultrasensitive detection of protein linked to multiple autoimmune diseases

April 18, 2017

Researchers in France have developed a new method that will allow doctors to detect minute amounts of a protein called interferon- in patient samples. The technique, which is described in the study "Detection of interferon- protein reveals differential levels and cellular sources in disease" published April 18 in The Journal of Experimental Medicine, will aid the diagnosis and treatment of numerous autoimmune diseases, including systemic lupus erythematosus (SLE) and dermatomyositis.

Interferon- proteins are a family of cell signaling molecules that play a crucial role in the immune system's antiviral defenses. But inappropriate activation of interferon signaling can cause the immune system to attack healthy tissues in the body, leading to a variety of autoimmune diseases. Elevated interferon signaling is linked, for example, to complex autoimmune disorders such as SLE, dermatomyositis, and diabetes mellitus. Mutations in individual genes can also activate interferon signaling and cause a class of autoimmune diseases known as type I interferonopathies.

Diagnosing these diseases and understanding the role of interferon- proteins in their pathology have been hampered by the inability of clinicians to directly measure the levels of these proteins in patient samples. This is largely because interferon- proteins are only present in tiny amounts. They are extremely potent molecules, however, so even small changes in interferon- levels can have dramatic effects on the immune system.

A team of researchers led by Darragh Duffy from the Pasteur Institute and Yanick Crow from the Institut Imagine in Paris developed an ultrasensitive method to detect minute amounts of interferon- in human blood or cerebrospinal fluid. The method is based on a technology called single-molecule array digital ELISA that can identify individual antibody-labeled proteins. Using high-affinity anti-interferon- antibodies isolated from patients with a syndrome called APECED, the researchers were able to detect interferon- at attomolar concentrations, equivalent to just quadrillionths of a gram per milliliter of sample. This is 5,000 times more sensitive than existing methods for detecting these proteins.

The researchers were able to measure interferon- levels in the blood of healthy, SLE, dermatomyositis, and type I interferonopathy patients. As expected, levels were elevated in all of the autoimmune samples; in SLE patients, higher interferon- levels correlated with an increased severity of disease. The research team also detected elevated interferon- levels in the cerebrospinal fluid of patients infected with viral meningitis.

Interferon- levels were particularly high in patients with type I interferonopathies. By isolating individual types of blood cells, the research team discovered that mutations in a gene called STING cause elevated production of interferon- in monocytes and plasmacytoid dendritic cells. These cells were not affected in patients with SLE, dermatomyositis, or other type I interferonopathies, however, suggesting that the source of interferon- can vary depending on the autoimmune disease.

"The ultrasensitive detection of interferon- protein in human material can provide novel insights into disease-causing pathways," explains co-senior author Duffy. "It also allows the direct measurement of interferon protein as a disease biomarker for patient stratification and for monitoring the efficacy of treatments such as the antiinterferon signaling therapies that are currently being tested."

The researchers describe their new detection method in a brand-new article format in The Journal of Experimental Medicine, Technical Advances. These primary research studies report a novel technique that advances preclinical or clinical research. Authors validate the new technique and demonstrate its advantage over existing approaches. Learn more about the new format here.
-end-
Rodero et al., 2017. http://jem.rupress.org.cgi/doi/10.1084/jem.20161451?PR

About The Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM provides free online access to many article types from the date of publication and to all archival content. Established in 1896, JEM is published by The Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Rockefeller University Press

Related Autoimmune Diseases Articles:

Repurposing existing drugs or combining therapies could help in the treatment of autoimmune diseases
Research has found that re-purposing already existing drugs or combining therapies could be used to treat patients who have difficult to treat autoimmune diseases.
Discovery may help explain why women get autoimmune diseases far more often than men
New evidence points to a key role for a molecular switch called VGLL3 in autoimmune diseases, and the major gap in incidence between women and men.
Autoimmune diseases of the liver may be triggered by exposure to an environmental factor
Investigators from a large population-based study conducted in northern England have suggested that exposure to a persistent, low-level environmental trigger may have played a role in the development of autoimmune diseases of the liver within that population.
Autoimmune diseases are related to each other, some more than others
Researchers using the world's largest twin registry to study seven autoimmune diseases found the risk of developing the seven diseases is largely inherited, but that some diseases are more closely related than others.
Researchers identify possible role of Foxp1 protein in control of autoimmune diseases
Scientists at the Higher School of Economics, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS), and the Memorial Sloan Kettering Cancer Center created a genetic model that helps to understand how the body restrains autoimmune and oncological diseases.
RNA proofreading mistakes drive group of autoimmune diseases
Study shows how mistakes in an RNA proofreading system can generate out-of-control interferon signaling, setting off development of autoimmune disease.
Purdue developing new treatment options for millions with autoimmune diseases
Purdue University researchers have developed a series of molecules that may provide more reliable relief with fewer side effects for people with any of several autoimmune diseases.
Study elucidates epigenetic mechanisms behind autoimmune diseases
Brazilian researchers use an editing tool to investigate a gene that plays a key role in eliminating autoaggressive cells and controlling the development of diseases such as type 1 diabetes.
New theory on why more women than men develop autoimmune diseases
New findings are now being presented on possible mechanisms behind gender differences in the occurrence of rheumatism and other autoimmune diseases.
Epstein-Barr virus protein can 'switch on' risk genes for autoimmune diseases
Infection with Epstein-Barr virus (EBV), the cause of infectious mononucleosis, has been associated with subsequent development of systemic lupus erythematosus and other chronic autoimmune illnesses, but the mechanisms behind this association were unclear.
More Autoimmune Diseases News and Autoimmune Diseases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.