Nav: Home

Killing flu viruses with help from a frog

April 18, 2017

Frog mucus is loaded with molecules that kill bacteria and viruses, and researchers are beginning to investigate it as a potential source for new anti-microbial drugs. One of these "host defense peptides," courtesy of a colorful tennis-ball-sized frog species (Hydrophylax bahuvistara) from southern India, can destroy many strains of human flu and protect mice against flu infection, researchers report April 18 in the journal Immunity.

This peptide is far from becoming an anti-flu drug, but this is the first evidence of its flu-killing ability. It seems to work by binding to a protein that is identical across many influenza strains, and in lab experiments, it was able to neutralize dozens of flu strains, from the 1934 archival viruses up to modern ones. The researchers named the newly identified peptide "urumin," after the urumi, a sword with a flexible blade that snaps and bends like a whip, which comes from the same Indian province, Kerala, as the frog.

"Different frogs make different peptides, depending on where their habitat is. You and I make host defense peptides ourselves," says flu specialist and study co-author Joshy Jacob of Emory University. "It's a natural innate immune mediator that all living organisms maintain. We just happened to find one that the frog makes that just happens to be effective against the H1 influenza type."

Practically all animals make at least a few anti-microbial host defense peptides as part of their innate immune systems, and researchers are only beginning to catalog them. However, frogs have drawn the most attention as a source of host defense peptides, because it's relatively easy to isolate the peptides from their mucus. Researchers can simply give the frogs a small electric shock or rub a powder on the frogs to make them secrete their defense peptides, which can then be collected.

Researchers from the Rajiv Gandhi Center for Biotechnology in Kerala, India, have been isolating peptides from their local frogs and screening them for potential anti-bacterials, but Jacob wondered if there might also be peptides that neutralize human-infecting viruses. Jacob and his colleagues screened 32 frog defense peptides against an influenza strain and found that 4 of them had flu-busting abilities.

"I was almost knocked off my chair," says Jacob. "In the beginning, I thought that when you do drug discovery, you have to go through thousands of drug candidates, even a million, before you get 1 or 2 hits. And here we did 32 peptides, and we had 4 hits."

Unfortunately, when the researchers exposed isolated human red blood cells (in a dish) to the flu-buster peptides, three out of the four proved toxic. However, the fourth--urumin--seemed harmless to human cells but lethal to a wide range of flu viruses. Electron microscope images of the virus after exposure to urumin reveal a virus that has been completely dismantled.

Jacob's team is still working out the details of the flu-destroying mechanism, but the urumin appears to work by targeting a viral surface protein called hemagluttinin, the H in H1N1. "The virus needs this hemagglutinin to get inside our cells," says Jacob. "What this peptide does is it binds to the hemagglutinin and destabilizes the virus. And then it kills the virus."
-end-
This work was supported in part by a NIH base grant to Yerkes National Primate Center.

Immunity, Holthausen et al.: "An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Virusest" http://www.cell.com/immunity/fulltext/S1074-7613(17)30128-0

Immunity (@ImmunityCP), published by Cell Press, is a monthly journal that reports the most important advances in immunology research. Topics include: immune cell development and senescence, signal transduction, gene regulation, innate and adaptive immunity, autoimmunity, infectious disease, allergy and asthma, transplantation, and tumor immunology. Visit: http://www.cell.com/immunity. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Peptides Articles:

Pigments by design
Researchers have discovered how to tune the optical and electrical properties of a synthetic polymer similar to melanin, a natural pigment that's the primary factor affecting skin color.
Frog slime kills flu virus
Frogs' skins were known to secrete peptides that defend them against bacteria.
Killing flu viruses with help from a frog
Frog mucus is loaded with molecules that kill bacteria and viruses, and researchers are beginning to investigate it as a potential source for new anti-microbial drugs.
A promising strategy to increase activity in antimicrobial peptides
In an article published recently in Plos One, researchers from INRS-Institut Armand-Frappier Research Centre reported a strategy that could lead to the discovery of new cationic antimicrobial peptides (CAMPs) with greatly enhanced antimicrobial properties.
Sequencing poisonous mushrooms to potentially create medicine
A team of Michigan State University scientists has genetically sequenced two species of poisonous mushrooms, discovering that they can theoretically produce billions of compounds through one molecular assembly line.
More Peptides News and Peptides Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.