Nav: Home

Killing flu viruses with help from a frog

April 18, 2017

Frog mucus is loaded with molecules that kill bacteria and viruses, and researchers are beginning to investigate it as a potential source for new anti-microbial drugs. One of these "host defense peptides," courtesy of a colorful tennis-ball-sized frog species (Hydrophylax bahuvistara) from southern India, can destroy many strains of human flu and protect mice against flu infection, researchers report April 18 in the journal Immunity.

This peptide is far from becoming an anti-flu drug, but this is the first evidence of its flu-killing ability. It seems to work by binding to a protein that is identical across many influenza strains, and in lab experiments, it was able to neutralize dozens of flu strains, from the 1934 archival viruses up to modern ones. The researchers named the newly identified peptide "urumin," after the urumi, a sword with a flexible blade that snaps and bends like a whip, which comes from the same Indian province, Kerala, as the frog.

"Different frogs make different peptides, depending on where their habitat is. You and I make host defense peptides ourselves," says flu specialist and study co-author Joshy Jacob of Emory University. "It's a natural innate immune mediator that all living organisms maintain. We just happened to find one that the frog makes that just happens to be effective against the H1 influenza type."

Practically all animals make at least a few anti-microbial host defense peptides as part of their innate immune systems, and researchers are only beginning to catalog them. However, frogs have drawn the most attention as a source of host defense peptides, because it's relatively easy to isolate the peptides from their mucus. Researchers can simply give the frogs a small electric shock or rub a powder on the frogs to make them secrete their defense peptides, which can then be collected.

Researchers from the Rajiv Gandhi Center for Biotechnology in Kerala, India, have been isolating peptides from their local frogs and screening them for potential anti-bacterials, but Jacob wondered if there might also be peptides that neutralize human-infecting viruses. Jacob and his colleagues screened 32 frog defense peptides against an influenza strain and found that 4 of them had flu-busting abilities.

"I was almost knocked off my chair," says Jacob. "In the beginning, I thought that when you do drug discovery, you have to go through thousands of drug candidates, even a million, before you get 1 or 2 hits. And here we did 32 peptides, and we had 4 hits."

Unfortunately, when the researchers exposed isolated human red blood cells (in a dish) to the flu-buster peptides, three out of the four proved toxic. However, the fourth--urumin--seemed harmless to human cells but lethal to a wide range of flu viruses. Electron microscope images of the virus after exposure to urumin reveal a virus that has been completely dismantled.

Jacob's team is still working out the details of the flu-destroying mechanism, but the urumin appears to work by targeting a viral surface protein called hemagluttinin, the H in H1N1. "The virus needs this hemagglutinin to get inside our cells," says Jacob. "What this peptide does is it binds to the hemagglutinin and destabilizes the virus. And then it kills the virus."
-end-
This work was supported in part by a NIH base grant to Yerkes National Primate Center.

Immunity, Holthausen et al.: "An Amphibian Host Defense Peptide Is Virucidal for Human H1 Hemagglutinin-Bearing Influenza Virusest" http://www.cell.com/immunity/fulltext/S1074-7613(17)30128-0

Immunity (@ImmunityCP), published by Cell Press, is a monthly journal that reports the most important advances in immunology research. Topics include: immune cell development and senescence, signal transduction, gene regulation, innate and adaptive immunity, autoimmunity, infectious disease, allergy and asthma, transplantation, and tumor immunology. Visit: http://www.cell.com/immunity. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Peptides Articles:

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Ragon Institute study identifies viral peptides critical to natural HIV control
Investigators at the Ragon Institute of MGH, MIT and Harvard have used a novel approach to identify specific amino acids in the protein structure of HIV that appear critical to the ability of the virus to function and replicate.
Light and peptides: New method diversifies natural building blocks of life
EPFL chemists have developed a new, light-based method for modifying peptides at the C-terminal position.
Peptides with brominated tryptophan analogs could protect marine animals
Bromotryptophan is a nonstandard amino acid that is rarely incorporated in ribosomally synthesized and post-translationally modified peptides (ribosomal peptides).
About TFE: Old and new findings
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides.
CRISPR reveals the secret life of antimicrobial peptides
Using CRISPR, scientists at EPFL have carried out extensive work on a little-known yet effective weapon of the innate immune system, antimicrobial peptides.
Nanopores make portable mass spectrometer for peptides a reality
University of Groningen scientists have developed nanopores that can be used to directly measure the mass of peptides.
Dry-cured ham bones -- a source of heart-healthy peptides?
Drinking bone broth is a recent diet fad that proponents claim fights inflammation, eases joint pain and promotes gut health.
Natural-based antibiofilm and antimicrobial peptides from microorganisms
The exploration of AMP and antibiofilm peptide (ABP) producer microorganisms brings with it a lot of challenges experimentally.
A boundary dance of amyloid-β stepping into dementia
Alzheimer's disease is caused by aggregates of amyloid-β (Aβ) peptides.
More Peptides News and Peptides Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab