Nav: Home

Frog slime kills flu virus

April 18, 2017

A component of the skin mucus secreted by South Indian frogs can kill the H1 variety of influenza viruses, researchers from Emory Vaccine Center and the Rajiv Gandhi Center for Biotechnology in India have discovered.

Frogs' skins were known to secrete "host defense peptides" that defend them against bacteria. The finding, scheduled for publication in Immunity, suggests that the peptides represent a resource for antiviral drug discovery as well.

Anti-flu peptides could become handy when vaccines are unavailable, in the case of a new pandemic strain, or when circulating strains become resistant to current drugs, says senior author Joshy Jacob, PhD, associate professor of microbiology and immunology at Emory Vaccine Center and Emory University School of Medicine.

The first author of the paper is graduate student David Holthausen, and the research grew out of collaboration with M.R. Pillai, PhD and Sanil George, PhD from the Rajiv Gandhi Center for Biotechnology.

Jacob and his colleagues named one of the antiviral peptides they identified urumin, after a whip-like sword called "urumi" used in southern India centuries ago. Urumin was found in skin secretions from the Indian frog Hydrophylax bahuvistara, which were collected after mild electrical stimulation.

Peptides are short chains of amino acids, the building blocks of proteins. Some anti-bacterial peptides work by punching holes in cell membranes, and are thus toxic to mammalian cells, but urumin was not.

Instead, urumin appears to only disrupt the integrity of flu virus, as seen through electron microscopy. It binds the stalk of hemagglutinin, a less variable region of the flu virus that is also the target of proposed universal vaccines. This specificity could be valuable because current anti-influenza drugs target other parts of the virus, Jacob says.

Because flu viruses from humans cannot infect frogs, producing urumin probably confers on frogs an advantage in fighting some other pathogen, he says.

Delivered intranasally, urumin protected unvaccinated mice against a lethal dose of some flu viruses. Urumin was specific for H1 strains of flu, such as the 2009 pandemic strain, and was not effective against other current strains such as H3N2.

Developing antimicrobial peptides into effective drugs has been a challenge in the past, partly because enzymes in the body can break them down. Jacob's lab is now exploring ways to stabilize antiviral peptides such as urumin, as well as looking for frog-derived peptides that are active against other viruses like dengue and Zika.
-end-
Emory co-authors include senior research associate Ali Ellebedy, PhD and assistant professors Jens Wrammert, PhD and Anice Lowen, PhD.

Holthausen is in the Immunology and Molecular Pathogenesis graduate program. Jacob's lab is based at Yerkes National Primate Research Center. The research was supported by Emory University and by the Office of Research Infrastructure Programs (Primate centers: P51OD11132).

Emory Health Sciences

Related Peptides Articles:

Pigments by design
Researchers have discovered how to tune the optical and electrical properties of a synthetic polymer similar to melanin, a natural pigment that's the primary factor affecting skin color.
Frog slime kills flu virus
Frogs' skins were known to secrete peptides that defend them against bacteria.
Killing flu viruses with help from a frog
Frog mucus is loaded with molecules that kill bacteria and viruses, and researchers are beginning to investigate it as a potential source for new anti-microbial drugs.
A promising strategy to increase activity in antimicrobial peptides
In an article published recently in Plos One, researchers from INRS-Institut Armand-Frappier Research Centre reported a strategy that could lead to the discovery of new cationic antimicrobial peptides (CAMPs) with greatly enhanced antimicrobial properties.
Sequencing poisonous mushrooms to potentially create medicine
A team of Michigan State University scientists has genetically sequenced two species of poisonous mushrooms, discovering that they can theoretically produce billions of compounds through one molecular assembly line.
Peptides as tags in fluorescence microscopy
Advance in biomedical imaging: The Biocenter of the University of W├╝rzburg in close collaboration with the University of Copenhagen has developed an alternative approach to fluorescent tagging of proteins.
Team finds new way to attach lipids to proteins, streamlining drug development
Protein-based drugs are used in the treatment of every kind of malady, from cancer to heart disease to rheumatoid arthritis.
Machine-learning discovery and design of membrane-active peptides for biomedicine
There are approximately 1,100 known antimicrobial peptides (AMP) with diverse sequences that can permeate microbial membranes.
Toxic peptides disrupt membrane-less organelles in neurodegenerative disease
St. Jude Children's Research Hospital scientists reveal how toxic peptides that arise due to amyotrophic lateral sclerosis and frontotemporal dementia target the integrity of membrane-less organelles and trigger disease.
Peptides vs. superbugs
Several peptides have an antibacterial effect -- but they are broken down in the human body too quickly to exert this effect.

Related Peptides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...