Nav: Home

Charge density wave inhomogeneity and pseudogap in 1T-TiSe2

April 18, 2018

1T-TiSe2 has been widely studied in the past few decades as one of the typical charge density wave (CDW) materials. Recently, superconductivity was realized in this system through Cu intercalation, pressure or electric gating, forming a dome-shaped superconductivity phase diagram. Owing to this resemblance to high -Tc cuprates, much attention has been paid to 1T-TiSe2 to understand the superconducting mechanism and its interplay with CDW. However, it is still under debate whether CDW competes with superconductivity or not. Via tuning the dopant level, 1T-TiSe2 system can undergo the transition from CDW to superconductivity, and thus provides an ideal platform to study the relationship between these two states.

Recently, Shao-Chun Li's group in collaboration with Jian-Xin Li's group at Nanjing University, reported the dopant-induced CDW inhomogeneity and the pseudogap state in the lightly doped 1T-TiSe2 by using scanning tunneling microscopy (STM)/spectroscopy (STS). The CDW inhomogeneity gives rise to the local reduced CDW gap, but still with the 2×2 CDW modulation. Such inhomogeneity explained naturally the previous contradicting results between the transport and XRD measurements on CuxTiSe2, which exhibited that the CDW is suppressed in transport study while CDW modulation can be still detected in the superconducting region. Furthermore, they found a new gap, which is smaller than the CDW gap and its opening temperature is higher than the superconducting transition temperature Tc, similar to the pseudogap observed in high-Tc cuprates. Upon doping electrons to the 1T-TiSe2 surface, the pseudogap evolves into a gap with coherence peaks, indicating that it is a precursor to the superconducting gap.

This study shows that the CDW state in 1T-TiSe2 doesnot compete with the superconducting state. The discovery of pseudogap indicates that the superconducting transition in 1T-TiSe2 shares some similarities to that in high Tc cuprates. Even though the formation mechanism is still not clear, the pseudogap becomes prominent upon doping electrons, and finally evolves in to coherence peaked gap. This study provides insight on the understanding of superconducting mechanism, and the interplay between superconductivity and CDW in 1T-TiSe2.
-end-
This work was supported by the Ministry of Science and Technology of China (2014CB921103, 2013CB922103, 2016YFA0300400, 2015CB921202), the National Natural Science Foundation of China (11774149, 11374140, 11190023, 11774152, 51372112, 11574133), NSF Jiangsu Province (BK20150012), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.

See the article: Kai-Wen Zhang, Chao-Long Yang, Bin Lei, Pengchao Lu, Xiang-Bing Li, Zhen-Yu Jia, Ye-Heng Song, Jian Sun, Xianhui Chen, Jian-Xin Li, Shao-Chun Li, Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2, Science Bulletin, 2018, doi: 10.1016/j.scib.2018.02.018
https://www.sciencedirect.com/science/article/pii/S2095927318300951

Science China Press

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
Superconductivity of pure Bismuth crystal at 0.00053 K
Scientists at TIFR Mumbai have discovered superconductivity of pure Bismuth crystal.
When crystal vibrations' inner clock drives superconductivity
Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor.
Physicists induce superconductivity in non-superconducting materials
Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.
A new spin on superconductivity
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices.
Superconductivity: After the scenario, the staging
Superconductivity with a high Tc continues to present a theoretical mystery.

Related Superconductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...