Nav: Home

Charge density wave inhomogeneity and pseudogap in 1T-TiSe2

April 18, 2018

1T-TiSe2 has been widely studied in the past few decades as one of the typical charge density wave (CDW) materials. Recently, superconductivity was realized in this system through Cu intercalation, pressure or electric gating, forming a dome-shaped superconductivity phase diagram. Owing to this resemblance to high -Tc cuprates, much attention has been paid to 1T-TiSe2 to understand the superconducting mechanism and its interplay with CDW. However, it is still under debate whether CDW competes with superconductivity or not. Via tuning the dopant level, 1T-TiSe2 system can undergo the transition from CDW to superconductivity, and thus provides an ideal platform to study the relationship between these two states.

Recently, Shao-Chun Li's group in collaboration with Jian-Xin Li's group at Nanjing University, reported the dopant-induced CDW inhomogeneity and the pseudogap state in the lightly doped 1T-TiSe2 by using scanning tunneling microscopy (STM)/spectroscopy (STS). The CDW inhomogeneity gives rise to the local reduced CDW gap, but still with the 2×2 CDW modulation. Such inhomogeneity explained naturally the previous contradicting results between the transport and XRD measurements on CuxTiSe2, which exhibited that the CDW is suppressed in transport study while CDW modulation can be still detected in the superconducting region. Furthermore, they found a new gap, which is smaller than the CDW gap and its opening temperature is higher than the superconducting transition temperature Tc, similar to the pseudogap observed in high-Tc cuprates. Upon doping electrons to the 1T-TiSe2 surface, the pseudogap evolves into a gap with coherence peaks, indicating that it is a precursor to the superconducting gap.

This study shows that the CDW state in 1T-TiSe2 doesnot compete with the superconducting state. The discovery of pseudogap indicates that the superconducting transition in 1T-TiSe2 shares some similarities to that in high Tc cuprates. Even though the formation mechanism is still not clear, the pseudogap becomes prominent upon doping electrons, and finally evolves in to coherence peaked gap. This study provides insight on the understanding of superconducting mechanism, and the interplay between superconductivity and CDW in 1T-TiSe2.
-end-
This work was supported by the Ministry of Science and Technology of China (2014CB921103, 2013CB922103, 2016YFA0300400, 2015CB921202), the National Natural Science Foundation of China (11774149, 11374140, 11190023, 11774152, 51372112, 11574133), NSF Jiangsu Province (BK20150012), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.

See the article: Kai-Wen Zhang, Chao-Long Yang, Bin Lei, Pengchao Lu, Xiang-Bing Li, Zhen-Yu Jia, Ye-Heng Song, Jian Sun, Xianhui Chen, Jian-Xin Li, Shao-Chun Li, Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2, Science Bulletin, 2018, doi: 10.1016/j.scib.2018.02.018
https://www.sciencedirect.com/science/article/pii/S2095927318300951

Science China Press

Related Superconductivity Articles:

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...