Nav: Home

Similarity between high-risk atherosclerotic plaque and cancer cells discovered

April 18, 2018

Atherosclerotic plaque builds up gradually in the walls of the body's arteries. Ruptured plaque can trigger clots that cause life-threatening conditions such as stroke and heart attacks.

Now, for the first time, analysis of plaque removed by surgery show that the metabolism of unstable plaque seems to be re-programmed in the same way as in white blood cells that cause inflammation. The results suggest that treatment with drugs that counteract the altering of metabolism could be a new approach to limit the inflammation in plaque that causes cardiovascular disease.

"The altered metabolism we have identified in high-risk plaque is also present in cancer cells. Just as the metabolism in cancer cells is re-programmed to be able to digest sugar quickly, the sugar uptake of the dangerous plaque seems to be greater than that of stable plaque", explains Harry Björkbacka, associate professor of experimental cardiovascular research at Lund University.

The difference in metabolism between unstable and stable plaque indicates that cardiovascular disease, like cancer tumours, might be limited through treatment with drugs that attack the metabolism. The next step for the researchers behind the study is to attempt to establish this link.

The research study also proposes an interesting approach to improved diagnosis of plaque.

"The discovery that high-risk plaque, unlike stable plaque, has a re-programmed metabolism, opens up new opportunities for identifying the dangerous plaque for instance by visualising the uptake of nutrients specific to the re-programmed metabolism using a PET camera", says Harry Björkbacka.

Currently, there are no precise methods for identifying and effectively treating high-risk plaque that can lead to cardiovascular disease. To a certain extent, the size and location of the plaque can be detected using ultrasound. In cases where it is thought to be high-risk, an intervention is required to insert a stent or to remove the plaque.

Harry Björkbacka and his colleagues plan to investigate exactly which cells in the plaque re-programme their metabolism. They will also map more details of the particular metabolism present in high-risk plaque.

The current study analysed plaque from 159 patients at Skåne University Hospital (SUS) in Malmö. The plaque is kept in a plaque biobank of over 900 samples that enables unique research on the causes of cardiovascular disease.
-end-


Lund University

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab