Nav: Home

Similarity between high-risk atherosclerotic plaque and cancer cells discovered

April 18, 2018

Atherosclerotic plaque builds up gradually in the walls of the body's arteries. Ruptured plaque can trigger clots that cause life-threatening conditions such as stroke and heart attacks.

Now, for the first time, analysis of plaque removed by surgery show that the metabolism of unstable plaque seems to be re-programmed in the same way as in white blood cells that cause inflammation. The results suggest that treatment with drugs that counteract the altering of metabolism could be a new approach to limit the inflammation in plaque that causes cardiovascular disease.

"The altered metabolism we have identified in high-risk plaque is also present in cancer cells. Just as the metabolism in cancer cells is re-programmed to be able to digest sugar quickly, the sugar uptake of the dangerous plaque seems to be greater than that of stable plaque", explains Harry Björkbacka, associate professor of experimental cardiovascular research at Lund University.

The difference in metabolism between unstable and stable plaque indicates that cardiovascular disease, like cancer tumours, might be limited through treatment with drugs that attack the metabolism. The next step for the researchers behind the study is to attempt to establish this link.

The research study also proposes an interesting approach to improved diagnosis of plaque.

"The discovery that high-risk plaque, unlike stable plaque, has a re-programmed metabolism, opens up new opportunities for identifying the dangerous plaque for instance by visualising the uptake of nutrients specific to the re-programmed metabolism using a PET camera", says Harry Björkbacka.

Currently, there are no precise methods for identifying and effectively treating high-risk plaque that can lead to cardiovascular disease. To a certain extent, the size and location of the plaque can be detected using ultrasound. In cases where it is thought to be high-risk, an intervention is required to insert a stent or to remove the plaque.

Harry Björkbacka and his colleagues plan to investigate exactly which cells in the plaque re-programme their metabolism. They will also map more details of the particular metabolism present in high-risk plaque.

The current study analysed plaque from 159 patients at Skåne University Hospital (SUS) in Malmö. The plaque is kept in a plaque biobank of over 900 samples that enables unique research on the causes of cardiovascular disease.
-end-


Lund University

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...