Leptin's neural circuit identified

April 18, 2018

BOSTON (April 18, 2018)--Revealing surprising answers to a long-standing enigma about the brain target of the anti-obesity hormone leptin, neuroscientists at Tufts University School of Medicine have used CRISPR genome editing to identify a neural circuit in the hypothalamus as the primary mechanism in mediating leptin's anti-obesity and anti-diabetes effects and have identified two distinct mechanisms underlying leptin's inhibition of appetite. The research, which appears online in the journal Nature on April 18, advances efforts to find more effective therapies for obesity, type 1 and type 2 diabetes, and their complications.

Although its award-winning discovery transformed the study of obesity more than 20 years ago, leptin's mechanisms have remained a mystery. Secreted by white fat cells, leptin acts in the brains of humans and many other animals as a satiety signal to reduce appetite and maintain stable weight and blood sugar levels. Dysregulation of leptin or its receptors results in ravenous appetite and extreme overeating (hyperphagia), obesity, and type 2 diabetes (which accounts for approximately 91% of diabetes diagnosed in adults in the U.S., affecting about 21 million people). Leptin supplements are generally ineffective for these disorders because, for unknown reasons, most obese individuals are leptin-resistant, and leptin's clinical applications remain limited despite extensive study.

"While it's known that leptin receptors express in many neuronal types, extensive research has largely failed to uncover either a specific group of neurons that mediates leptin's primary effects or the molecular mechanisms involved. Whether such a specific group of neurons even exists is also controversial. Without identifying the real target that leptin works on, it is difficult to study its pathway or even effectively test any hypotheses," said Dong Kong, Ph.D., assistant professor of neuroscience at Tufts School of Medicine and senior author on the Nature paper. "Our mechanistic study provides important insight into the biggest issues - how leptin works and how leptin resistance develops - and making leptin a more clinically usable molecule to fight both obesity and diabetes. We also hope our research strategy and genetic tools will inspire researchers in other neurobiological and metabolic areas."

Flying in the face of prevailing views

To search for leptin's targets in the brain, Kong and his team initiated their research based on the often overlooked finding that leptin corrects type 1 diabetes in an insulin-independent manner, thereby successfully bypassing the issue of leptin sensitivity. The Tufts researchers induced diabetes in non-obese adult mice with the drug streptozotocin (STZ), which breaks pancreatic beta cells and stops insulin and leptin production, and then extensively mapped neuronal brain activity.

"We found that AgRP [agouti-related protein-producing] neurons in the hypothalamus were extremely active in these mice, and we suspected that the STZ-induced leptin deficiency was causing this. We were excited when we successfully used leptin to inhibit the AgRP neurons and quickly reverse the diabetes," said the paper's co-first author Christopher Bartolome, a Ph.D. student in the neuroscience program at the Sackler School of Graduate Biomedical Sciences at Tufts where Kong is also a member of the neuroscience and the cell, molecular and developmental biology program faculties.

AgRP neurons had been proposed as a direct target for leptin by early leptin researchers. Subsequently, however, most scientists had discarded that idea because deleting leptin receptors in AgRP neurons using the popular Cre-LoxP gene editing system had failed to replicate either obesity or diabetes found in mice bred to lack leptin receptors. Kong and his team wondered if the chronic obesity and diabetes present in such mice from birth might be obscuring how leptin worked.

To confirm that leptin was indeed targeting AgRP neurons - a finding that flew in the face of prevailing views - the Tufts neuroscientists developed a new CRISPR genome editing technology that used an adeno-associated virus to carry guide RNAs to specifically delete AgRP neuron leptin receptors in young adult mice. The technology's capacity to target adults was important because during development AgRP neurons are known to be susceptible to impacts sometimes associated with Cre-Lox gene editing, a sensitivity that might explain why past studies using Cre-LoxP techniques produced no effects on body weight.

"We found that deletion of leptin receptors in AgRP neurons induced marked obesity and diabetes and largely attenuated leptin's anti-obesity and anti-diabetes effects. This demonstrated that AgRP neurons represent the major site in the brain to mediate leptin's effects," said Kong, who was an early adopter of CRISPR techniques.

Leptin inhibits AgRP neurons pre- and post-synaptically

The researchers not only identified AgRP as the major neuronal target of leptin in the brain and an important focus for developing obesity and diabetes treatment, but also discovered two distinct mechanisms through which leptin inhibits these neurons: One is a pre-synaptic mechanism in which neurons secreting the powerful neuroinhibitor GABA innervate AgRP neurons to mediate leptin's acute effects on feeding, and the other is a post-synaptic mechanism in which a potassium channel sensitive to the nucleotide ATP is required for leptin to act on AgRP neurons to regulate energy balance, food intake, and blood sugar.

"These findings are very important because fully understanding the neural basis of leptin's effects could help lead to a better understanding of the causes of obesity, leptin resistance, and, even more importantly, to the development of mechanism-based therapies," said the paper's co-first author Jie Xu, Ph.D., a postdoctoral scholar in the Kong laboratory.
-end-
Other authors on the paper are Cho Shing Low, Ph.D. student in the cell, molecular and developmental biology program, Sackler School; Xinchi Yi, research assistant in the Kong laboratory; and Kong laboratory postdoctoral scholars Cheng-Hao Chien, Ph.D., and Peng Wang, Ph.D.

This research was supported by awards from the National Institute of Neurological Disorders and Stroke (R21NS097922, T32NS061764-09) and the National Institute of Diabetes and Digestive and Kidney Diseases (K01DK094943, R01DK108797, P30DK046200) of the National Institutes of Health; the American Heart Association; the Boston Nutrition Obesity Research Center; and the Charles Hood Foundation. The content of this announcement is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funders.

Xu, J., Bartolome, C., Low, C., Yi, X., Chien, C., Wang, P., Kong, D. (2018). Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature. doi:10.1038/s41586-018-0049-7

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.

Tufts University, Health Sciences Campus

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.