Nav: Home

Lasers make magnets behave like fluids

April 18, 2019

For years, researchers have pursued a strange phenomenon: When you hit an ultra-thin magnet with a laser, it suddenly de-magnetizes. Imagine the magnet on your refrigerator falling off.

Now, scientists at CU Boulder are digging into how magnets recover from that change, regaining their properties in a fraction of a second.

According to a study published this week in Nature Communications, zapped magnets actually behave like fluids. Their magnetic properties begin to form "droplets," similar to what happens when you shake up a jar of oil and water.

To find that out, CU Boulder's Ezio Iacocca, Mark Hoefer and their colleagues drew on mathematical modeling, numerical simulations and experiments conducted at Stanford University's SLAC National Accelerator Laboratory.

"Researchers have been working hard to understand what happens when you blast a magnet," said Iacocca, lead author of the new study and a research associate in the Department of Applied Mathematics. "What we were interested in is what happens after you blast it. How does it recover?"

In particular, the group zeroed in on a short but critical time in the life of a magnet--the first 20 trillionths of a second after a magnetic, metallic alloy gets hit by a short, high-energy laser.

Iacocca explained that magnets are, by their nature, pretty organized. Their atomic building blocks have orientations, or "spins," that tend to point in the same direction, either up or down--think of Earth's magnetic field, which always points north.

Except, that is, when you blast them with a laser. Hit a magnet with a short enough laser pulse, Iacocca said, and disorder will ensue. The spins within a magnet will no longer point just up or down, but in all different directions, canceling out the metal's magnetic properties.

"Researchers have addressed what happens 3 picoseconds after a laser pulse and then when the magnet is back at equilibrium after a microsecond," said Iacocca, also a guest researcher at the U.S. National Institute of Standards and Technology (NIST). "In between, there's a lot of unknown."

It's that missing window of time that Iacocca and his colleagues wanted to fill in. To do that, the research team ran a series of experiments in California, blasting tiny pieces of gadolinium-iron-cobalt alloys with lasers. Then, they compared the results to mathematical predictions and computer simulations.

And, the group discovered, things got fluid. Hoefer, an associate professor of applied math, is quick to point out that the metals themselves didn't turn into liquid. But the spins within those magnets behaved like fluids, moving around and changing their orientation like waves crashing in an ocean.

"We used the mathematical equations that model these spins to show that they behaved like a superfluid at those short timescales," said Hoefer, a co-author of the new study.

Wait a little while and those roving spins start to settle down, he added, forming small clusters with the same orientation--in essence, "droplets" in which the spins all pointed up or down. Wait a bit longer, and the researchers calculated that those droplets would grow bigger and bigger, hence the comparison to oil and water separating out in a jar.

"In certain spots, the magnet starts to point up or down again," Hoefer said. "It's like a seed for these larger groupings."

Hoefer added that a zapped magnet doesn't always go back to the way it once was. In some cases, a magnet can flip after a laser pulse, switching from up to down.

Engineers already take advantage of that flipping behavior to store information on a computer hard drive in the form of bits of ones and zeros. Iacocca said that if researchers can figure out ways to do that flipping more efficiently, they might be able to build faster computers.

"That's why we want to understand exactly how this process happens," Iacocca said, "so we can maybe find a material that flips faster."
-end-
The research was partly supported by the U.S. Department of Energy, Basic Energy Sciences.

Co-authors on the study also included researchers at Chalmers University of Technology, SLAC National Accelerator Laboratory, Tongji University, University of York, Stockholm University, Ca' Foscari University of Venice, Temple University, European X-Ray Free-Electron Laser Facility, Nihon University, Radboud University, University of Liège, Sheffield Hallam University and Uppsala University.

University of Colorado at Boulder

Related Laser Articles:

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
New laser advances
Lasers are poised to take another step forward: Researchers at Case Western Reserve University, in collaboration with partners around the world, have been able to control the direction of a laser's output beam by applying external voltage.
More Laser News and Laser Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.