Nav: Home

Light and peptides: New method diversifies natural building blocks of life

April 18, 2019

Discovering new biological targets is a critical part of our ongoing battle against diseases. Over the years, scientists have made impressive progress towards the understanding of biological systems, constantly identifying novel targets. The structural diversity of these targets requires a broad range of different therapeutic agents.

"Small synthetic molecules are still key players, but biomolecules such as peptides, proteins and oligonucleotides have become an important area of research," says Professor Jérôme Waser, director of EPFL's Laboratory of Catalysis and Organic Synthesis. Peptides are particularly interesting, with about 140 evaluated in clinical trials in 2015. However, peptides often are not stable in the blood and cannot permeate cells well, both of which diminish their potential use as drugs.

One solution to overcome these difficulties is chemically modifying the natural structure of peptides, a process called "functionalization". In chemistry, a molecule is "functionalized" by adding chemical groups to it, thus endowing it with new functions, capabilities, or properties, such as enhanced stability in the human body. However, functionalization of peptides is difficult, due to their complex structure.

"The main reason is the lack of selectivity when you try to modify a peptide: it contains many positions that react with chemicals, resulting in useless mixtures," explains Waser. "Therefore, methods enabling selective functionalization of a single position in peptides are actively sought-after to access more efficient ant stable peptide-based drugs."

This is what Waser's lab has now achieved, using "EBX reagents" - a class of very reactive organic compounds developed by the group and now commercially available. Using those reagents, the researchers converted the C-terminal carboxylic acid of peptides into a carbon-carbon triple bond - an alkyne (in chemical jargon a "decarboxylative alkynylation"). The alkyne moiety is a very valuable functional group that can be used to further modify the peptides. It has been used extensively in drug discovery, material sciences and chemical biology.

Peptides do not spontaneously react with EBX reagents, so the scientists had to use a catalyst. In order to activate it, the researchers turned to light or, in more technical terms, "photoredox catalysis": visible light is absorbed by the catalyst, which then selectively activates one bond in the reacting molecules. "Using light as a renewable energy source to perform organic reactions allows a temporal and spatial resolution with very mild reaction conditions," says Waser.

The researchers made two innovations: First, they designed novel fine-tuned organic dyes as photoredox catalysts. This was important as light-mediated reactions are based usually on rare, toxic and expensive transition metal catalysts.

Second, the researchers achieved this first "decarboxylative alkynylation" on native peptides. This is an especially attractive one-step transformation of a natural compound into a synthetic derivative as it offers a platform for modifying the physical and chemical properties of the peptide through a single, easy to perform manipulation (all the "ingredients" just need to be mixed up and let to stand in natural light).

The method can be used with almost all amino acids present on the peptides, while maintaining complete selectivity towards the C-terminal position over the peptide side-chains.

With their new method, the scientists were also able to obtain derivatives from the valuable bioactive peptide GRGDNP that blocks cells from attaching to fibronectin, an important process in the vasodilatation of blood vessels, which could be very useful in the study of cardiovascular disease.
-end-
Reference

Marion Garreau, Franck Le Vaillant Jerome Waser. C-Terminal Bioconjugation of Peptides through Photoredox Catalyzed Decarboxylative Alkynylation. Angewandte Chemie 18 April 2019. DOI: 10.1002/anie.201901922

Ecole Polytechnique Fédérale de Lausanne

Related Peptides Articles:

Designer peptides show potential for blocking viruses, encourage future study
Chemically engineered peptides, designed and developed by a team of researchers at Rensselaer Polytechnic Institute, could prove valuable in the battle against some of the most persistent human health challenges.
Tracking down cryptic peptides
Using a newly developed method, researchers from the University of Würzburg, in cooperation with the University Hospital of Würzburg, were able to identify thousands of special peptides on the surface of cells for the first time.
Synthesis of prebiotic peptides gives clues to the origin of life on Earth
Coordination Compounds Lab of Kazan Federal University started researching prebiotic peptide synthesis in 2013 with the use of the ASIA-330 flow chemistry system.
Peptides that can be taken as a pill
Peptides represent a billion-dollar market in the pharmaceutical industry, but they can generally only be taken as injections to avoid degradation by stomach enzymes.
Harnessing psyllid peptides to fight citrus greening disease
BTI, USDA and UW scientists have identified peptides in the Asian citrus psyllid, an insect that spreads the bacterium that causes citrus greening disease (huanglongbing, HLB).
New technique has potential to protect oranges from citrus greening
Citrus greening, also called Huanglongbing (HLB), is devastating the citrus industry.
Researchers show what drives a novel, ordered assembly of alternating peptides
A team of researchers has verified that it is possible to engineer two-layered nanofibers consisting of an ordered row of alternating peptides, and has also determined what makes these peptides automatically assemble into this pattern.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Ragon Institute study identifies viral peptides critical to natural HIV control
Investigators at the Ragon Institute of MGH, MIT and Harvard have used a novel approach to identify specific amino acids in the protein structure of HIV that appear critical to the ability of the virus to function and replicate.
Light and peptides: New method diversifies natural building blocks of life
EPFL chemists have developed a new, light-based method for modifying peptides at the C-terminal position.
More Peptides News and Peptides Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.