Nav: Home

Multistep self-assembly opens door to new reconfigurable materials

April 18, 2019

CHAMPAIGN, Ill. -- Self-assembling synthetic materials come together when tiny, uniform building blocks interact and form a structure. However, nature lets materials like proteins of varying size and shape assemble, allowing for complex architectures that can handle multiple tasks.

University of Illinois engineers took a closer look at how nonuniform synthetic particles assemble and were surprised to find that it happens in multiples phases, opening the door for new reconfigurable materials for use in technologies such as solar cells and catalysis.

The findings are reported in the journal Nature Communications.

"Traditional self-assembly can be thought of like a grocery store stacking apples for a display in the produce section," said Qian Chen, a professor of materials science and engineering and lead author of the new study. "They would need to work with similarly sized and shaped apples - or particles in the case of self-assembly - to make the structure sturdy."

In the new study, Chen's group observed the behavior of microscale silver plates of varied size and nanoscale thickness in liquids. Because the particles used in self-assembling materials are so small, they behave like atoms and molecules, which allow researchers to use classical chemistry and physics theories to understand their behavior, the researchers said.

The nonuniform particles repel and attract according to laws of nature in plain, deionized water. However, when the researchers add salt to the water, changing electrostatic forces trigger a multistep assembly process. The nonuniform particles begin to assemble to form columns of stacked silver plates and further assemble into increasingly complex, ordered 3D hexagonal lattices, the team found.

"We can actually witness the particles assemble in this hierarchy using a light microscope," said Binbin Luo, a materials science and engineering graduate student and study co-author. "This way, we can track particle motions one by one and study the assembly dynamics in real time."

"The findings of this study may allow for the development of reconfigurable self-assembly materials," said Ahyoung Kim, a materials science and engineering graduate student and study co-author. "These materials can change from one type of solid crystal to another type with different properties for a variety of applications."

"Another benefit of this finding is that it can be generalized to other types of systems," Chen said. "If you have another type of nanoparticle, be it magnetic or semiconducting, this hierarchal assembly principal still applies, allowing for even more types of reconfigurable materials."
-end-
Graduate students John W. Smith and Zihao Ou, former postdoctoral researcher Juyeong Kim, and undergraduate student Zixuan Wu also contributed to this study.

The National Science Foundation supported this research.

Editor's notes:

To reach Qian Chen, call 217-300-1137; email qchen20@illinois.edu. The paper "Hierarchical self-assembly of 3D lattices from polydisperse anisometric colloids" is available from the U. of I. News Bureau. DOI: 10.1038/s41467-019-09787-6

University of Illinois at Urbana-Champaign

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.