Nav: Home

Flies smell through a Gore-Tex system

April 18, 2019

The male peacock has beautiful feathers to attract mates, and lotus leaves are highly water-repellent thanks to elaborate surface structures. Both the colorful feathers and the ability to repel water are due to patterns of tiny surface structure on the nanometer (one millionth of a milimeter) scale. Although such surface structures are common in nature, the way they develop and the biological mechanisms underlying their formation are not well understood. Now, a research group led by Shigeo Hayashi of the RIKEN Center for Biosystems Dynamics Research (BDR) has gained important insights into how the nanopores that allow the fruit fly to detect chemicals in the air, and has identified the gene responsible for their development.

Insects have external skeletons, called exoskeletons, which help them survive in harsh environments and protect them from predators, helping them to spread almost all over the earth. The ability to smell airborne odorants also contributes to the ability to search for foods, mates and other environmental cues. In insects, the cuticle covering sensilla -- olfactory organs found on the antennas of insects -- has small pores with diameters between 50 and 200 nanometers. Those nanopores are believed to function as filters that allow odorant molecules to enter but prevent the entry of larger airborne particles and help the insects avoid liquid loss.

To find out more about how these pores develop, the researchers observed the developing pupa of fruit fly in detail using transmission electron microscopy. They found that the cuticular nanopores in the fruit fly's olfactory sensilla originate from a curved ultrathin film that is formed in the outermost envelope layer of the cuticle, and secreted from specialized protrusions in the plasma membrane of the hair-forming (trichogen) cell. The envelope curvature coincides with plasma membrane undulations associated with structures within the cells.

They then conducted an investigation of the genetics behind the formation of pores. Using next-generation genome sequencing, they discovered a gene -- named gore-tex -- that is responsible for the formation of the pores. Knocking out the gene did not lead to any deficits in morphology or affect the survival of flies, but it hampered the formation of pores on the sensilla and the ability to smell. Further analyses revealed that the gore-tex gene is a member of the gene family called Osiris, and encodes a protein that is essential for envelope curvature, nanopore formation, and odor receptivity, and is expressed specifically in developing olfactory trichogen cells. Other members of the Osiris gene family are expressed in cuticle-secreting cells, and they are only found in insect genomes.

"Our study revealed the elements required for the development of nanopores to allow odor reception, and identified Osiris genes as a platform for investigating the evolution of surface nano-fabrication in insects," Hayashi says. "We hope that studies like this will help us understand how nature builds these fascinating nanostructures that allow living creatures to acquire many specialized functions."
-end-


RIKEN

Related Fruit Fly Articles:

Dual role of fruit fly protein in connecting chromosome copies
Research at Nagoya University has identified a double function for the Drosophila Dmt protein in both establishing and maintaining cohesion whereby identical chromatids pair during DNA replication.
In fruit fly and human genetics, timing is everything
Using fruit flies, UNC-Chapel Hill researchers discovered a cascade of molecular signals that program gene activity to drive the fly from one stage of maturation to the next, like a baby turning into an adult.
New light sensing molecule discovered in the fruit fly brain
Six biological pigments called rhodopsins play well-established roles in light-sensing in the fruit fly eye.
Sugar or protein? How fruit fly brains control what they choose to eat
Using fruit flies, Johns Hopkins researchers say they have identified a specific and very small set of brain cells -- dubbed dopamine wedge neurons -- responsible for driving the insects' food preferences toward what they need, rather than what they like.
Small but mighty: Fruit fly muscles
A new study explains the nimble, complex maneuvers that allow the pesky fruit fly to evade being swatted.
How the fruit fly's brain knows where the fruit fly's going
When we turn our head to one side, the visual field 'turns' the other way.
Why fruit fly sperm are giant
The fruit fly Drosophila bifurca is only a few millimeters in size but produces almost six centimeters long sperm.
Fruit fly brains shed light on why we get tired when we stay up too late
Studying fruit flies, whose sleep is remarkably similar to that in people, Johns Hopkins researchers say they've identified brain cells that are responsible for why delaying bedtime creates chronic sleepiness.
First peek into the brain of a freely walking fruit fly
Researchers at the Kavli Institute for Brain and Mind at the University of California San Diego have developed a technique for imaging brain activity in a freely walking fruit fly.
Recent evolutionary change allows a fruit fly to dine on a toxic fruit
Fruit flies in the lab of John Pool, in the genetics department at the University of Wisconsin-Madison, happily eat a noni fruit that is normally toxic to fly species.

Related Fruit Fly Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...