The brain's imperfect execution of mathematically optimal perception

April 18, 2019

Human perception is based on mathematically optimal principles, but the brain implements those principles imperfectly, suggests new research by Elina Stengård and Ronald van den Berg of the University of Uppsala, Sweden. They present their findings in PLOS Computational Biology.

The human brain uses imprecise sensory inputs to determine truths about the surrounding environment. Previous research has suggested that human perception is "Bayesian," meaning that the brain accounts for uncertainty of sensory observations in a mathematically optimal way. However, some of those studies have been criticized mathematically, and other research suggests that the brain is inherently imprecise at the neural level.

To address those concerns, Van den Berg and Stengård presented 30 volunteers with a series of perception tests. These tests involved identifying whether ellipse shapes appearing on a screen were tilted clockwise or counterclockwise from vertical. Different tests incorporated sensory uncertainty in different ways, such as varying degrees of elongation of the ellipse shape, distractions in the form of nearby ellipses, and a short display time of the ellipse on the screen.

The researchers then analyzed their results against a series of different mathematical models. They found that the data is best accounted for by a model that is Bayesian at its core, but also subject to imperfections. This model outperformed both an optimal Bayesian model and all non-Bayesian models that were tested.

"Our results suggest that human perception is blueprinted on optimal strategies, even though the brain's execution of these strategies seems to be imperfect," Van den Berg says. "This novel concept provides a theoretical middle ground between the seemingly opposing literatures of optimal models and heuristic models."

Additional research is needed to pinpoint what causes the apparent imperfections in the decision-making process during the ellipse perception tests. Future research could also test whether the imperfect Bayesian model can account for human behavior in other kinds of perception tests, and in higher-level cognitive decision-making tasks.
-end-
Peer-reviewed / Experimental study / People

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006465

Citation: Stengård E, van den Berg R (2019) Imperfect Bayesian inference in visual perception. PLoS Comput Biol 15(4): e1006465. https://doi.org/10.1371/journal.pcbi.1006465

Funding: RVDB acknowledges support from the Swedish Research Council (Vetenskapsrådet; reg. nr. 2015-00371; http://www.vr.se) and Marie Sklodowska Curie Actions, Cofund (project INCA 600398; https://ec.europa.eu/research). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.