Nav: Home

Triplet superconductivity demonstrated under high pressure

April 18, 2019

Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.

By using very high pressure and a magnetic field, the team demonstrated that the uranium-based material UBe13 exhibits 'triplet superconductivity.' This is a phenomenon in which electrons form pairs in a parallel spin state. In conventional superconducting materials, electrons of opposite spins pair together, effectively cancelling out each other's spins.

"Until now, there have been very few clear-cut examples of triplet superconductivity, even though a number of superconductors have been discovered in various metallic systems in the past century," says Tohoku University materials scientist Yusei Shimizu. "Our pressure experiments at low temperatures have provided strong evidence for spin-triplet superconductivity in UBe13."

Materials that become superconducting, often at low temperatures, allow electricity to pass through them with virtually no resistance, minimizing energy loss in the process. This phenomenon, discovered initially in some pure metals, has been found in an amazing variety of different systems. Among these, UBe13 was one of the earliest discovered 'heavy-fermion' superconductors. The electrons in heavy fermion metallic compounds appear to be 1,000 times more massive than electrons in ordinary metals.

With the new insight, scientists can now explain what happens in the enigmatic uranium material UBe13 at the atomic scale and how it acts as a spin-triplet superconductor in magnetic fields.

A team from Université Grenoble Alpes in France and Tohoku University in Japan measured the superconductivity of UBe13 under varying high pressures at very low temperatures (Figures). They found that the superconducting state in this material is successfully explained by a theoretical model in which electrons form so-called Cooper pairs with parallel spins.

This happens as an 'unconventional superconducting ground state' at ambient and high pressures up to six gigapascals. For comparison, diamonds melt using a high-energy laser at a pressure of 1.5 gigapascals. This peculiar superconducting state successfully explains the very puzzling nature of uranium-based triplet superconductors under high magnetic fields.

Currently, superconductors require very low temperatures for peak performance, so they are used primarily in magnetic resonance imaging machines and particle accelerators. Understanding how various materials conduct electricity at the atomic scale could lead to a broader range of applications.

In addition to demonstrating triplet superconductivity, the researchers note that UBe13 could help answer more general questions. For example, the surface excitations of UBe13 might be suitable for physicists to observe theoretical particles called Majorana fermions, an exotic type of composite particle that is its own anti-particle and that could revolutionize quantum computing in the future.

Tohoku University

Related Superconductivity Articles:

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.
Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.
How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.
New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.
Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.
Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
More Superconductivity News and Superconductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.