Nav: Home

The unique biology of human breast milk

April 19, 2016

Humans may have the most complex breast milk of all mammals. Milk from a human mother contains more than 200 different sugar molecules, way above the average 30-50 found in, for example, mouse or cow milk. The role of each of these sugars and why their composition changes during breastfeeding is still a scientific puzzle, but it's likely connected to the infant immune system and developing gut microbiome. A Review of what's known and the different jobs of human breast milk appears April 19 in Trends in Biochemical Sciences.

Breast milk is often an infant's first meal, but many of the sugar molecules in the milk are not meant to feed the baby. Infants are born sterile of any bacteria in their guts, but within a few days they have millions, and after a week there are billions. The sugars that come from mother's milk are usually the first compounds that these bacteria have to chew on, a free lunch that is intended to culture specific bacterial species.

"The first impact breast milk has is favoring the colonization of the gut by specific bacterial groups that can digest these sugar molecules," says Review co-author Thierry Hennet, from the Institute of Physiology at the University of Zurich. "Infants don't have the machinery to digest these sugars so they are literally for the bacteria--it's like a seeding ground, and breast milk is the fertilizer."

Human breast milk also helps lay the foundation for the new baby's immune system. After birth, milk is rich in antibodies and molecules that slow the growth of harmful bacteria and coordinate white blood cell activity.

After one month, when the infant begins developing an adaptive immune system of his or her own, the composition of breast milk transitions so that levels of maternal antibodies drop by more than 90 percent. There is also a sharp decrease in the diversity of breast milk sugars, indicating less selection for bacterial species. Instead, mature human breast milk has an increased number of fat and other nutrients that support infant growth.

Despite the many functions of breast milk, children can grow up healthy with limited supplies or without ever being exposed, raising controversial questions about what is normal when it comes to breastfeeding. Breast milk clearly reduces infant mortality and significantly decreases a newborn's risk for gut and airway infections, but there's little support for longer-term benefits.

"We have to be careful about giving any recommendations," says Hennet, who co-wrote the Review with Lubor Borsig, also a physiologist at the University of Zurich. "On the one hand, breast milk is the product of millions of years of evolution and certainly possesses the optimal nutrients for a newborn, but the question is how long does the newborn really need this supply? We feel families should make that decision, and not scientists."

What researchers can do is continue to work on understanding the role of all of the different molecules in breast milk, something that has become much easier with advances in gene sequencing technologies. The next few years are likely to yield new understanding of the hormones within human breast milk and the exact role of the bacterial populations that it cultures in the infant gut.
-end-
This paper was supported by the Zurich Center for Integrative Human Physiology and the Swiss National Science Foundation.

Trends in Biochemical Sciences, Hennet and Borsig: "Breastfed at Tiffany's" http://www.cell.com/trends/biochemical-sciences/fulltext/S0968-0004(16)00045-1

Trends in Biochemical Sciences (@TrendsBiochem), published by Cell Press, is a monthly review journal that keeps readers informed about recent advances in biochemistry and molecular biology through succinct articles. Learn more: http://www.cell.com/trends/biochemical-sciences. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...