Alerting stem cells to hurry up and heal

April 19, 2017

Accelerated healing isn't just for superheroes. A new study in Cell Reports suggests a way that mere mortals can potentially speed their recovery from a wide variety of injuries.

"Our research shows that by priming the body before an injury, you can speed the process of tissue repair and recovery, similar to how a vaccine prepares the body to a fight infection," said lead author Joseph T. Rodgers. He began the research during his postdoctoral studies at the Stanford University School of Medicine, and continued it in his current position as an assistant professor of stem cell biology and regenerative medicine at USC.

This recent study builds upon Rodgers' previous finding: when one part of the body suffers an injury, adult stem cells in uninjured areas throughout the body enter a primed or "Alert" state. Alert stem cells have an enhanced potential to repair tissue damage.

In this new study, Rodgers identified a signal that alerts stem cells and showed how it could serve as a therapy to improve healing.

Searching for a signal that could alert stem cells, Rodgers and colleagues focused their attention on the blood. They injected blood from an injured mouse into an uninjured mouse. In the uninjured mouse, this caused stem cells to adopt an alert state.

Rodgers and his colleagues identified the critical signal in blood that alerted stem cells: an enzyme called Hepatocyte Growth Factor Activator (HGFA). In normal conditions, HGFA is abundant in the blood, but inactive. Injury activates HGFA, so HGFA signaling can alert stem cells to be ready to heal.

Leveraging this discovery, Rodgers and his colleagues asked the question: What happens if HGFA alerts stem cells before an injury occurs? Does this improve the repair response? They injected active HGFA into mice that received either a muscle or skin injury a couple of days later. The mice healed faster, began running on their wheels sooner and even regrew their fur better than mice that did not receive the HGFA booster.

These findings indicate that HGFA can alert many different types of stem cells, rousing them from their normal resting or "quiescent" state, and preparing them to respond quickly and efficiently to injury.

"We believe this could be a therapeutic approach to improve recovery in situations where injuries can be anticipated," said Rodgers, "such as surgery, combat or sports."

This therapeutic approach could prove particularly useful for people with impaired healing, such as older adults or diabetics.

"This work shows that there are factors in the blood that control our ability heal," Rodgers said. "We are looking at how HGFA might explain declines in healing, and how we can use HGFA to restore normal healing."
-end-
Co-authors include senior author Tom Rando, Matthew Schroeder and Cynthia Ma.

Funding came from the National Institutes of Health (grants AG041764, AG036695 and AR062185), the Department of Veterans Affairs, The Donald E. and Delia B. Baxter Foundation and the Glenn Foundation for Medical Research, and Stanford's Department of Neurology and Neurological Sciences.

University of Southern California - Health Sciences

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.