Twin research reveals which facial features are most controlled by genetics

April 19, 2017

Research published this week in Scientific Reports uses computer image and statistical shape analysis to shed light on which parts of the face are most likely to be inherited.

The study, by researchers at King's College London, examined 3D face models of nearly 1,000 UK female twins, and found that the shapes of the end of the nose, the area above and below the lips, cheekbones and the inner corner of the eye were highly influenced by genetics.

The team took scans of twins' faces using 3D cameras and custom built statistical software to generate thousands of points that were perfectly aligned across the faces and then measured how 'curved' each face looked at each one of those locations.

The researchers then compared how similar these measurements were between identical twins, who have the same genes, and non-identical twins, who only share half of the genes. By seeing which parts of the face are the most similar in shape in a pair of identical twins, the researchers then calculated the likelihood that the shape of that part of the face is determined by genetics.

This likelihood is quantified as the "heritability", a number between 0 and 1, where a larger number implies that it is more likely that the shape of the face is controlled by genes. The researchers have published 'atlases' showing how heritable each part of the face shape is, which can be viewed online at: http://heritabilitymaps.info

Lead researcher, Professor Giovanni Montana from King's College London said: "The notion that our genes control our face is self-evident. Many of us have facial traits that clearly resample those of our parents and identical twins are often indistinguishable.

"However, quantifying precisely which parts of the face are strongly heritable has been challenging so far. By combining 3D models of the face with a statistical algorithm that measures local changes in shape, we have been able to create detailed 'face heritability maps'. These maps will help identify specific genes shaping up the human face, which may also be involved in diseases altering the face morphology."

"This study also shows us that even identical twins can vary quite a lot on facial features, but because of the key areas being genetically controlled, we perceive them as being 'identical,'" added Professor Tim Spector, Director of the TwinsUK study at King's College London.

The software for analysing 3D scans could also have other uses in medical imaging, engineering and facial recognition technology.
-end-
This study was funded by the Wellcome Trust and supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London and the NIHR Guy's and St Thomas' Clinical Research Facility.

Notes to Editors:

About King's College London

King's College London is one of the top 25 universities in the world (2016/17 QS World University Rankings) and among the oldest in England. King's has more than 29,600 students (of whom nearly 11,700 are graduate students) from some 150 countries worldwide, and some 8,000 staff.

King's has an outstanding reputation for world-class teaching and cutting-edge research. In the 2014 Research Excellence Framework (REF), eighty-four per cent of research at King's was deemed 'world-leading' or 'internationally excellent' (3* and 4*).

Since our foundation, King's students and staff have dedicated themselves in the service of society. King's will continue to focus on world-leading education, research and service, and will have an increasingly proactive role to play in a more interconnected, complex world. Visit our website to find out more about Vision 2029, King's strategic vision for the next 12 years to 2029, which will be the 200th anniversary of the founding of the university. For further information about King's, please visit the King's in Brief web pages.

The TwinsUK study is based at St Thomas' Hospital.

About Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate.

King's College London

Related Genetics Articles from Brightsurf:

Human genetics: A look in the mirror
Genome Biology and Evolution's latest virtual issue highlights recent research published in the journal within the field of human genetics.

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.

Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.

New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties

Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.

The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.

New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.

Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.

New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.

Read More: Genetics News and Genetics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.