Nav: Home

New study explains extraordinary resilience of deadly bacterium

April 19, 2017

Researchers at the University of Maryland have identified how the pathogenic bacterium Pseudomonas aeruginosa uses tension-activated membrane channels to stop itself from swelling up and bursting when it is suddenly exposed to water. The study, which will be published April 19 in The Journal of General Physiology, helps explain how this bacterium--a major cause of hospital-acquired infections--persists in a variety of different environments.

P. aeruginosa is a remarkably adaptable bacterium. It naturally occurs in soil and freshwater, but it can also thrive on the moist surfaces of medical equipment, leading to opportunistic infections of immunocompromised or otherwise vulnerable patients that result in life-threatening conditions like pneumonia or sepsis.

One reason for P. aeruginosa's adaptability is its capacity to survive sudden changes in the water content of its environment. Rainfall, for example, poses a problem for bacteria because it dilutes the cell's surrounding media, prompting water to enter the cell by osmosis. Such "osmotic downshocks" can cause cells to swell up and burst, but some bacteria, including the gut bacterium Escherichia coli, carry mechanosensitive channels in their cell membranes that open up as soon as the cell starts to swell, letting small solute molecules--or osmolytes--exit the cell so that the osmotic gradient driving water influx is reduced. E. coli carries two types of mechanosensitive channels. The MscS channel releases modest amounts of osmolytes when swelling causes low amounts of membrane tension. The MscL channel is activated at higher tension levels to release osmolytes in larger amounts.

Sergei Sukharev and colleagues at the University of Maryland found that P. aeruginosa can tolerate considerably larger osmotic shocks than E. coli. P. aeruginosa cells were less permeable to water and faster at releasing osmolytes. The lower water permeability buys the cells more time to respond to osmotic downshocks, while the faster osmolyte release allows the bacterium to lose up to 20% of its dry weight in just 28 milliseconds.

The researchers determined that P. aeruginosa expresses one MscL- and two MscS-type channels. The MscL-type channel predominates and is present at a higher density in P. aeruginosa membranes than its equivalent in E. coli membranes, allowing P. aeruginosa cells to release larger amounts of osmolytes. But the two MscS-type channels are also important; they are activated earlier in response to cell swelling, and, by releasing modest amounts of osmolytes, they can reduce membrane tension and prevent the MscL channels from releasing more osmolytes than necessary.

"These results move us one step closer to a mechanistic understanding of the physiological response to osmotic downshocks," says Sukharev. "They also help explain the higher osmotic stability of highly adaptable P. aeruginosa as compared to enteric E. coli."
-end-
Çetiner et al., 2017. J. Gen. Physiol.http://jgp.rupress.org/cgi/doi/10.1085/jgp.201611699?PR

About The Journal of General Physiology

The Journal of General Physiology (JGP) features peer-reviewed research in biological, chemical, or physical mechanisms of broad physiological significance, with an emphasis on physiological problems at the cellular and molecular level. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JGP provides free online access to many article types from the date of publication and to all archival content. Established in 1918, JGP is published by The Rockefeller University Press. For more information, visit jgp.org.

Visit our Newsroom" target="_blank"> and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.Follow JGP on Twitter at @JGenPhysiol and @RockUPress.

Rockefeller University Press

Related Bacterium Articles:

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.
Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.
Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.
Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.
How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.
The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.
Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).
The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.
Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.
Cancer prevention drug also disables H. pylori bacterium
A medicine currently being tested as a chemoprevention agent for multiple types of cancer has more than one trick in its bag when it comes to preventing stomach cancer, Vanderbilt researchers have discovered.
More Bacterium News and Bacterium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.