How to protect cells from selfish mitochondrial DNA

April 19, 2017

Using yeast cells as a model, scientists from the A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University investigated the mechanisms which allow cells to protect themselves from invasion of selfish mitochondrial DNA molecules. The findings were published in the Journal of Cell Science.

The information on the structure and functioning of a cell is encoded in its DNA. While most of this information is encoded in nuclear DNA, a small but essential part is stored separately in mitochondrial DNA (mtDNA). The main role of mitochondria is to convert energy into ATP - the "molecular currency" of a cell. Mitochondrial DNA encodes some of the proteins which are involved in mitochondrial function. Selfish mitochondrial DNA molecules emerge as a result of mutations. Such mtDNA molecules usually contain large deletions. These mtDNA molecules do not contain information necessary for mitochondrial operation but at the same time have a competitive advantage over functional mtDNA molecules. Being shorter than the normal mtDNA, selfish mtDNA molecules are able to replicate faster than the normal ones. As a result, eventually selfish mtDNAs replace functional mtDNA molecules. The accumulation of selfish mtDNA molecules in the cells can impair mitochondria functioning and induce pathologies. In their work the scientists investigated potential strategies to protect cells from selfish mtDNA clonal expansion.

Dmitry Knorre, a senior researcher at the A.N. Belozersky Institute of Physico-Chemical Biology, the corresponding author of the study shares: "We have crossed yeast cells containing different (normal and selfish) variants of mtDNA and observed the results of their "competition". This experiment was possible because diploid yeast cells, in contrast to mammalian zygotes, inherit mtDNAs from both gametes (parents)".

The biologists have found out that the uncouplers of oxidative phosphorylation (namely, compounds, which decrease the efficiency of mitochondrial energy conversion) change the results of this "competition" in favor of functional mtDNA. Notably, this effect of uncouplers could be observed only in those cells, where mitochondria could divide into separate fragments and undergo intracellular digestion.

Dmitry Knorre says: "We've found that uncouplers stimulate the mitochondrial turnover in the cells. However, this effect is well pronounced only in zygotes but not in haploid yeast cells. Perhaps, the digestion of non-functional mitochondria is an evolutionary conserved mechanism protecting organisms from invasion of selfish mtDNA during sexual reproduction".

In their research the scientists have used fluorescence microscopy and electron microscopy and also molecular biology techniques.

The biologists are going to continue studying mitochondria degradation mechanisms at different stages of yeast life cycle. They want to find out how the cellular molecular machinery of "mitochondria digestion" recognizes bad mtDNAs hidden by two membrane layers and how the cell decides whether to eliminate this mitochondrion or not.

Lomonosov Moscow State University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to