Nav: Home

Researchers find new way of exploring the afterglow from the Big Bang

April 19, 2018

Researchers have developed a new way to improve our knowledge of the Big Bang by measuring radiation from its afterglow, called the cosmic microwave background radiation. The new results predict the maximum bandwidth of the universe, which is the maximum speed at which any change can occur in the universe.

The cosmic microwave background (CMB) is a reverberation or afterglow left from when the universe was about 300,000 years old. It was first discovered in 1964 as a ubiquitous faint noise in radio antennas. In the past two decades, satellite-based telescopes have started to measure it with great accuracy, revolutionizing our understanding of the Big Bang.

Achim Kempf, a professor of applied mathematics at the University of Waterloo and Canada Research Chair in the Physics of Information, led the work to develop the new calculation, jointly with Aidan Chatwin-Davies and Robert Martin, his former graduate students at Waterloo.

"It's like video on the Internet," said Kempf. "If you can measure the CMB with very high resolution, this can tell you about the bandwidth of the universe, in a similar way to how the sharpness of the video image on your Skype call tells you about the bandwidth of your internet connection."

The study appears in a special issue of Foundations of Physics dedicated to the material Kempf presented to the Vatican Observatory in Rome last year. The international workshop entitled, Black Holes, Gravitational Waves and Spacetime Singularities, gathered 25 leading physicists from around the world to present, collaborate and inform on the latest theoretical progress and experimental data on the Big Bang. Kempf's invitation was the result of this paper in Physical Review Letters, a leading journal in the field.

"This kind of work is highly collaborative," said Kempf, also an affiliate at the Perimeter Institute for Theoretical Physics. "It was great to see at the conference how experimentalists and theoreticians inspire each other's work."

While at the Vatican, Kempf and other researchers in attendance also shared their work with the Pope.

"The Pope has a great sense of humor and had a good laugh with us on the subject of dark matter," said Kempf.

Teams of astronomers are currently working on even more accurate measurements of the cosmic microwave background. By using the new calculations, these upcoming measurements might reveal the value of the universe's fundamental bandwidth, thereby telling us also about the fastest thing that ever happened, the Big Bang.
-end-


University of Waterloo

Related Big Bang Articles:

Big brains or big guts: Choose one
A global study comparing 2,062 birds finds that, in highly variable environments, birds tend to have either larger or smaller brains relative to their body size.
Dark matter may be older than the big bang, study suggests
Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics.
Cincinnati researchers say early puberty in girls may be 'big bang theory' for migraine
Adolescent girls who reach puberty at an earlier age may also have a greater chance of developing migraine headaches, according to new research from investigators at the University of Cincinnati (UC) College of Medicine.
More bang for the climate buck: study identifies hotspots for adaptation funding
Using a combination of crop models and expertise from farmers and others -- and applying them to our current trajectory of high greenhouse gas emissions -- scientists built a tool to assess climate risk vulnerability to help pinpoint communities in need of support for adaptation and mitigation.
Big data takes aim at a big human problem
A James Cook University scientist is part of an international team that's used new 'big data' analysis to achieve a major advance in understanding neurological disorders such as Epilepsy, Alzheimer's and Parkinson's disease.
Big Bang query: Mapping how a mysterious liquid became all matter
Lehigh University's Rosi Reed presents findings from new Beam Energy Scan at Brookhaven National Lab's Relativistic Heavy Ion Collider that tests the limits of quark-gluon plasma (QGP), the mysterious liquid thought to have existed in the micro-seconds after the Big Bang
Fossil from the Big Bang discovered with W. M. Keck Observatory
A relic cloud of gas, orphaned after the Big Bang, has been discovered in the distant universe by astronomers using the world's most powerful optical telescope, the W.
A bigger nose, a bigger bang: Size matters for ecoholocating toothed whales
A new study sheds light on how toothed whales adapted their sonar abilities to occupy different environments.
Johns Hopkins scientist finds elusive star with origins close to Big Bang
Astronomers have found what could be one of the universe's oldest stars, made almost entirely of materials spewed from the Big Bang.
The 'Big Bang' of Alzheimer's: Scientists ID genesis of disease
Scientists have discovered a ''Big Bang'' of Alzheimer's disease - the precise point at which a healthy protein becomes toxic but has not yet formed deadly tangles in the brain.
More Big Bang News and Big Bang Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.