Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018

St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported online today in the journal Cancer Cell.

The gene is IKZF1, which encodes the transcription factor IKAROS that regulates gene expression. IKZF1 is the fourth gene identified that--like the genes TP53, ETV6 and PAX5--can predispose carriers to develop B-cell acute lymphoblastic leukemia (ALL). Variants in IKZF1 can also influence how some patients respond to treatment.

Researchers found a rare IKZF1 germline variant in three generations of a German family affected by pediatric ALL. St. Jude researchers then analyzed data from almost 5,000 young ALL patients and found that 0.9 percent of patients with B-cell ALL, the most common pediatric ALL, also carried germline variations in IKZF1. Germline variants are usually inherited, carried in DNA found in most cells.

"This finding adds to the growing body of evidence that, while germline variations still account for a small percentage of pediatric ALL cases overall, more children than previously recognized inherit a predisposition to develop ALL," said Charles Mullighan, MBBS, M.D., a member of the St. Jude Department of Pathology.

Jun J. Yang, Ph.D., an associate member of the St. Jude Department of Pharmaceutical Sciences and Department of Oncology, added: "The results also show that germline variants influence the response of leukemia cells to specific chemotherapeutic agents." Mullighan and Yang are the study's corresponding authors.

"This will expand the number of genes to consider when screening for predisposition to leukemia, particularly B-ALL. And while not everyone carrying a germline IKZF1 variant will develop leukemia, these results will help us educate families about the potential risk of leukemia," said co-author Kim Nichols, M.D., director of the St. Jude Cancer Predisposition Division. As a group, Mullighan, Yang and Nichols have led research that identified the four known pediatric ALL predisposition genes.

IKZF1 frequently mutated in leukemic cells

The discovery comes a decade after Mullighan and his colleagues reported that IKZF1 was frequently mutated in leukemic cells and a harbinger of poor treatment outcomes.

The search for germline IKZF1 variants associated with ALL susceptibility began in Singapore. Nichols and Yang were there to talk about germline genetics of ALL and inherited (familial) cancer. During that visit, co-author Rupert Handgretinger, M.D., of Children's University Hospital, Tuebingen, Germany, mentioned three generations of a German family with a germline variation in IKZF1 and a family history of B-ALL. Two of the five family members with the variant had developed pediatric ALL and died. The remaining three are apparently healthy despite having reduced numbers of B cells.

Targeted sequencing of IKZF1 in 4,963 children with ALL identified 43 patients with 27 IKZF1 variants, almost exclusively patients with B-ALL. "The pattern of IKZF1 variants was surprising because many of the variants were in regions of the gene that are rarely mutated in leukemic cells; these regions of the gene have not been well characterized," Yang said.

IKZF1 variants affect IKAROS function

Extensive laboratory testing found at least 22 of the 28 variants affected protein functions. For example, IKZF1 variants resulted in IKAROS migrating outside the nucleus, which is where the protein normally functions. In other cases, variants were associated with increased cell adhesion.

"Based on existing models, we would have predicted only 60 percent of the newly identified IKZF1 variants would be deleterious," said Michelle Churchman, Ph.D., of St. Jude Pathology. Churchman, Maoxiang Qian, Ph.D., of St. Jude Pharmaceutical Sciences, and Geertruy te Kronnie, of the University of Padova, Italy, are the first authors.

IKZF1 variants require a second "hit" to cause cancer

"In IKZF1 and the other ALL predisposition genes, cells may require an additional cooperating mutation to develop into leukemia," Mullighan said. "While familial ALL is rare, these cases can point to genes and novel biology to examine in a larger patient population.

"This study demonstrates the power of sequencing large groups of seemingly sporadic cases that reveal the genetic underpinnings of the disease," he said.
-end-
The study's other authors include Wenjian Yang, Paige Tedrick, Rebekah Baskin, Katherine Verbist, Jennifer Peters, Ian Moore, Zhaohui Gu, Chunxu Qu, Hiroki Yoshihara, Shaina Porter, Shondra Pruett-Miller, Gang Wu, William Evans, Mary Relling and Ching-Hon Pui, all of St. Jude; Hui Zhang of St. Jude and Guangzhou Women and Children's Medical Center, China; and researchers at 12 institutions in the U.S., China and Germany. The patients in this analysis were enrolled in clinical research conducted by St. Jude and the Children's Oncology Group, a cooperative clinical research network.

The study was funded in part by the St. Baldrick's Foundation, grants (GM115279, CA021765, CA176063, CA19769501A1, CA98543, CA114766, CA98413, CA180886, CA180899) from the National Institutes of Health; and ALSAC, the fundraising and awareness organization of St. Jude.

St. Jude Children's Research Hospital

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.