Scientists identify a novel target for corn straw utilization

April 19, 2019

Plant cell walls, as repositories of fixed carbon, are an important source of biomass, which is mainly composed of cellulose, hemicellulose, and lignin. However, the complex lignin structure makes it a rather inefficient biomass source. Thorough understanding of lignin biosynthesis will improve the efficiency of biomass conversion into biofuels and increase the quality of forage and silage.

Maize brown midrib (bm) mutants, with reddish-brown pigmentation accumulated in the leaf midrib and reduced lignin content, are a significant germplasm. To date, at least six independent maize bm mutants (bm1-6) have been identified, among which genes controlling the bm1-4 mutants have already been recognized. However, genes controlling bm5 and bm6 had previously been unidentified. In a new study published in Biotechnology for Biofuels, a team of scientists led by Prof. FU Chunxiang from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, completed the identification of bm5 mutant. This was the first time that the locus of maize bm5 mutant had been identified.

Scientists found that the lignin gene Zm4CL1 was the locus for bm5 mutant through gene mapping, enzyme activity assay and metabolite profiling methods.

The comprehensive effects of Zm4CL1 mutation on total lignin content, composition and soluble phenolic acid accumulation were also elucidated in the study. The forage digestibility and cell wall saccharification efficiency were increased by 22.0% and 17.6%, respectively, in bm5 mutant compared to the control.

This study fills a key gap in knowledge about maize bm mutants. Also, it provides a novel target for molecular breeding of economic crops with highly efficient straw utilization.
-end-
The research was supported by the Ministry of Science and Technology Key Research and Development Program, the National Natural Science Foundation of China and the Shandong Provincial Natural Science Foundation Major Basic Research Project.

Chinese Academy of Sciences Headquarters

Related Biofuels Articles from Brightsurf:

Making biofuels cheaper by putting plants to work
One strategy to make biofuels more competitive is to make plants do some of the work themselves.

How to make it easier to turn plant waste into biofuels
Researchers have developed a new process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels.

Barriers and opportunities in renewable biofuels production
Researchers at Chalmers University of Technology, Sweden, have identified two main challenges for renewable biofuel production from cheap sources.

How biofuels from plant fibers could combat global warming
A study from Colorado State University finds new promise for biofuels produced from switchgrass, a non-edible native grass that grows in many parts of North America.

Calculating the CO2 emissions of biofuels is not enough
A new EU regulation aims to shrink the environmental footprint of biofuels starting in 2021.

Algae cultivation technique could advance biofuels
Washington State University researchers have developed a way to grow algae more efficiently -- in days instead of weeks -- and make the algae more viable for several industries, including biofuels.

Cutting the cost of ethanol, other biofuels and gasoline
Biofuels like the ethanol in US gasoline could get cheaper thanks to experts at Rutgers University-New Brunswick and Michigan State University.

Cellulosic biofuels can benefit the environment if managed correctly
Could cellulosic biofuels -- or liquid energy derived from grasses and wood -- become a green fuel of the future, providing an environmentally sustainable way of meeting energy needs?

Making oil from algae -- towards more efficient biofuels
The mechanism behind oil synthesis within microalgae cells has been revealed by a Japanese research team.

WSU study finds people willing to pay more for new biofuels
When it comes to second generation biofuels, Washington State University research shows that consumers are willing to pay a premium of approximately 11 percent over conventional fuel.

Read More: Biofuels News and Biofuels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.