Designer threads: New insight into protein fiber assembly

April 20, 2010

Understanding how mixtures of proteins assemble and how to manipulate them in the laboratory has many exciting biomedical applications, such as providing scaffolds for the engineering of tissues that can replace diseased or damaged human tissues. Now, research published by Cell Press in the April 20th issue of Biophysical Journal, reveals new information about the kinetics of protein assembly and demonstrates how to manipulate conditions in order to provide different distributions of protein fiber lengths.

"Developing a good understanding of the relationship between the sequence of a protein fiber and its structure, stability and how it folds up and assembles together with other proteins is key and underpins our ability to design new protein-based materials for bioengineering," explains senior study author, Professor Derek N. Woolfson from the School of Chemistry at the University of Bristol in the United Kingdom. "It is also critical to determine the timescale of protein assembly so that the process can be fully controlled and accurately manipulated."

In previous work, Prof. Woolfson and colleagues designed two short peptides that, when mixed together, assembled to form fibers. These peptides were engineered to have "sticky ends" that interacted to form long fibers which exhibited a natural protein structural motif called the "alpha-helical coiled-coil"; a structure where fibrous proteins coil up like the strands of a rope. In the current study, the researchers used multiple sophisticated and complementary biophysical tools along with peptide engineering to gain further insight into the molecular process and timing of going from the small nanoscale peptides to large micron-length fibers.

Using these techniques, the researchers were able to build a specific descriptive mathematical model for the self-assembly of the alpha-helical protein fibers. Prof. Woolfson's group was also able to demonstrate that they could intervene in the assembly process to manipulate the resulting fibrous structures with some precision. "This study and the resulting mechanism we propose present a potential route to temporal control of the assembly of fibers with future applications in biotechnology and nanoscale science and medicine," proposes Prof. Woolfson.
-end-
Researchers include Elizabeth H. C. Bromley, University of Bristol, Bristol, UK; Kevin J. Channon, University of Bristol, Bristol, UK; Patrick J. S. King, University of Bristol, Bristol, UK; Zahra N. Mahmoud, University of Bristol, Bristol, UK; Eleanor F. Banwell, University of Bristol, Bristol, UK; Michael F. Butler, Unilever Corporate Research, Colworth Science Park, Sharnbrook, Bedford, UK; Matthew P. Crump, University of Bristol, Bristol, UK; Timothy R. Dafforn, University of Birmingham, Birmingham, UK; Matthew R. Hicks, University of Warwick, Coventry, UK; Jonathan D. Hirst, University of Nottingham, Nottingham, UK; Alison Rodger, University of Warwick, Coventry, UK; and Derek N. Woolfson, University of Bristol, Bristol, UK.

Cell Press

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.