Bulletproof nuclei? Stem cells exhibit unusual absorption property

April 20, 2014

Stem cells - the body's master cells - demonstrate a bizarre property never before seen at a cellular level, according to a study published today from scientists at the University of Cambridge. The property - known as auxeticity - is one which may have application as wide-ranging as soundproofing, super-absorbent sponges and bulletproof vests.

Most materials when stretched will contract. For example, if one pulls on an elastic band, the elastic itself will get thinner. The opposite is also true: squeeze a material and it will expand - for example, if one squeezes a tennis ball between both hands, the circumference around the ball gets larger. However, material scientists have begun to explore auxeticity, an unusual property which has the opposite effect - squeeze it and it will contract, stretch it and it will expand. This means that auxetic materials act as excellent shock absorbers or sponges, a fact that is being explored for various uses.

Until now, auxeticity has only been demonstrated in manmade materials and very rarely in nature, such as some species of sponge. But today, in a paper published in the journal Nature Materials, a team of University of Cambridge researchers including biologists, engineers and physicists, report having observed auxeticity in the nuclei of embryonic stem cells, master cells within the body which can turn into any other type of cell.

Dr Kevin Chalut from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, who led the study, says: "This is a pretty bizarre finding and very unexpected. When the stem cell is in the process of transforming into a particular type of cell, its nucleus takes on an auxetic property, allowing it to 'sponge up' essential materials from its surrounding. This property has not, to my knowledge, been seen before at a cellular level and is highly unusual in the natural world."

The auxetic properties only appear in the stem cell's nucleus when it is in the transition stage, changing from an embryonic, non-specific stem cell into a differentiated, tissue-specific cell, such as a heart tissue cell. Dr Chalut and colleagues treated the transitioning cell's cytoplasm, the fluid surrounding the nucleus, with a coloured dye and found that when they stretched the nucleus, it absorbed the dye, suggesting that it had expanded to become porous. It is possible that it does so to absorb molecules from the cytoplasm or environment which would help the cell differentiate.

Auxetic materials are of great interest to material scientists and engineers and this new discovery may provide clues to different methods of manufacture. The vast majority of known auxetic materials are highly ordered, such as the auxetic honeycomb. However, some examples of disordered auxetic materials are known - for example, if one pulls both ends of a scrunched up ball of paper, the circumference around the ball expands. The nucleus of the transitional stem cell is likewise disordered.

"There is clearly a lot we can learn from nature," adds Dr Chalut. "We are already seeing auxeticity explored for its super-absorption properties, but despite great technological effort, auxetic materials are still rare and there is still much to discover about them in order to manufacture them better. To overcome this, materials scientists can do what has become de rigueur in their discipline: they can learn from nature. Studying how auxeticity has evolved in nature will guide research into new ways to produce auxetic materials, which might have many diverse applications in our everyday life."
-end-
Funding for the study was mainly provided by the Royal Society, the Wellcome Trust and the Medical Research Council.

University of Cambridge

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.