Nav: Home

'Genetic scalpel' can manipulate the microbiome, Yale study shows

April 20, 2017

The gut microbiome is crucial to health, encompassing bacterial communities that possess a hundred times more genes than the human genome. Its complexity has hampered investigation of possible roles of the microbiome in a host of maladies, including infectious and autoimmune diseases, obesity, and even behavioral disorders.

Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice -- a crucial step in understanding microbiome's impact on health and disease, they report in the April 20 issue of the journal Cell.

"We and others have been frustrated with the clumsy tools available for studying the microbiome -- it felt like trying to perform surgery with boxing gloves," said Andrew Goodman, associate professor of microbial pathogenesis at the Microbial Sciences Institute at West Campus and senior author of the paper. "We hope these new methods replace the boxing gloves with a scalpel."

First author Bentley Lim, along with Michael Zimmermann and Natasha Barry in the Goodman lab, engineered a "dimmer switch" for controlling gene expression in Bacteroides, the most common family of bacteria found in the human gut. This switch can turn gene expression up, down, or off in response to an artificial chemical not found in mice or their diets. By simply adding or withdrawing this chemical from the mouse's drinking water, the researchers were able to precisely track in real time the effects of altering gene activity in the microbiome inside the gut of living mice.

The team used these tools to understand how pathogens dine off sugars that microbiome bacteria strip from the gut wall in their search for food. By controlling the timing and extent of this activity, the researchers were able to measure how long these leftovers remain available for pathogens. The findings help explain how antibiotics counterintuitively increase the levels of these delicacies for pathogens and may one day help create more effective infectious disease therapies, the authors say.

"We can now study bacterial communities in various states and pinpoint specific genes and pathways involved in a variety of functions," Lim said. "If we are to find ways to intervene in these processes, we must first understand them at this level."
-end-
The work was funded by the National Institutes of Health, the Burroughs Wellcome Fund, and the DuPont, Pew, and HHMI Scholars Programs.

Yale University

Related Microbiome Articles:

The dust storm microbiome
The airborne dust carried in sand storms affects the health of people and ecosystems alike.
Makeup of vaginal microbiome linked to preterm birth
In a study of predominantly African-American women -- who have a much higher rate of delivering babies early compared with other racial groups -- researchers at Washington University School of Medicine in St.
Breast-feeding's role in 'seeding' infant microbiome
UCLA-led study finds that 30 percent of the beneficial bacteria in a baby's intestinal tract come directly from mother's milk, and an additional 10 percent comes from skin on the mother's breast.
Chronic fatigue syndrome linked to imbalanced microbiome
Scientists at the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health have discovered abnormal levels of specific gut bacteria related to chronic fatigue syndrome/myalgic encephalomyelitis, or ME/CFS, in patients with and without concurrent irritable bowel syndrome, or IBS.
'Genetic scalpel' can manipulate the microbiome, Yale study shows
Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice -- a crucial step in understanding microbiome's impact on health and disease.
An unbalanced microbiome on the face may be key to acne development
At the Microbiology Society's Annual Conference, researchers will show that the overall balance of the bacteria on a person's skin, rather than the presence or absence of a particular bacterial strain, appears to be an important factor for acne development and skin health.
Microbiome diversity is influenced by chance encounters
An MIT study suggests chance is an overlooked factor in the wide variation of microbe gut populations between individuals.
From mice, clues to microbiome's influence on metabolic disease
The community of microorganisms that resides in the gut, known as the microbiome, has been shown to work in tandem with the genes of a host organism to regulate insulin secretion, a key variable in the onset of the metabolic disease diabetes.
Study shows how a dog's diet shapes its gut microbiome
Studies of the gut microbiome have gone to the dogs -- and pets around the world could benefit as a result.
'FishTaco' sorts out who is doing what in your microbiome
How much do different bacterial species contribute to disease-associated imbalances in the human microbiome?

Related Microbiome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...