Nav: Home

'Genetic scalpel' can manipulate the microbiome, Yale study shows

April 20, 2017

The gut microbiome is crucial to health, encompassing bacterial communities that possess a hundred times more genes than the human genome. Its complexity has hampered investigation of possible roles of the microbiome in a host of maladies, including infectious and autoimmune diseases, obesity, and even behavioral disorders.

Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice -- a crucial step in understanding microbiome's impact on health and disease, they report in the April 20 issue of the journal Cell.

"We and others have been frustrated with the clumsy tools available for studying the microbiome -- it felt like trying to perform surgery with boxing gloves," said Andrew Goodman, associate professor of microbial pathogenesis at the Microbial Sciences Institute at West Campus and senior author of the paper. "We hope these new methods replace the boxing gloves with a scalpel."

First author Bentley Lim, along with Michael Zimmermann and Natasha Barry in the Goodman lab, engineered a "dimmer switch" for controlling gene expression in Bacteroides, the most common family of bacteria found in the human gut. This switch can turn gene expression up, down, or off in response to an artificial chemical not found in mice or their diets. By simply adding or withdrawing this chemical from the mouse's drinking water, the researchers were able to precisely track in real time the effects of altering gene activity in the microbiome inside the gut of living mice.

The team used these tools to understand how pathogens dine off sugars that microbiome bacteria strip from the gut wall in their search for food. By controlling the timing and extent of this activity, the researchers were able to measure how long these leftovers remain available for pathogens. The findings help explain how antibiotics counterintuitively increase the levels of these delicacies for pathogens and may one day help create more effective infectious disease therapies, the authors say.

"We can now study bacterial communities in various states and pinpoint specific genes and pathways involved in a variety of functions," Lim said. "If we are to find ways to intervene in these processes, we must first understand them at this level."
-end-
The work was funded by the National Institutes of Health, the Burroughs Wellcome Fund, and the DuPont, Pew, and HHMI Scholars Programs.

Yale University

Related Microbiome Articles:

The dust storm microbiome
The airborne dust carried in sand storms affects the health of people and ecosystems alike.
Makeup of vaginal microbiome linked to preterm birth
In a study of predominantly African-American women -- who have a much higher rate of delivering babies early compared with other racial groups -- researchers at Washington University School of Medicine in St.
Breast-feeding's role in 'seeding' infant microbiome
UCLA-led study finds that 30 percent of the beneficial bacteria in a baby's intestinal tract come directly from mother's milk, and an additional 10 percent comes from skin on the mother's breast.
Chronic fatigue syndrome linked to imbalanced microbiome
Scientists at the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health have discovered abnormal levels of specific gut bacteria related to chronic fatigue syndrome/myalgic encephalomyelitis, or ME/CFS, in patients with and without concurrent irritable bowel syndrome, or IBS.
'Genetic scalpel' can manipulate the microbiome, Yale study shows
Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice -- a crucial step in understanding microbiome's impact on health and disease.
More Microbiome News and Microbiome Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...