Nav: Home

Macrophages shown to be essential to a healthy heart rhythm

April 20, 2017

A Massachusetts General Hospital (MGH)-led research team has identified a surprising new role for macrophages, the white blood cells primarily known for removing pathogens, cellular debris and other unwanted materials. In their paper published in Cell the investigators describe discovering that macrophages are also essential to the healthy functioning of the heart, helping conduct the electric signals that coordinate the heartbeat.

"Our finding that a new cell type is involved in cardiac conduction may lead to better understanding of normal heart function. What really surprised me was that macrophages can depolarize -- change their electric charge -- when coupled to a myocyte. Down the line, this work on the role of macrophages in conduction may lead to new treatments for cardiac arrhythmias," says corresponding author Matthias Nahrendorf, MD, PhD, of the MGH Center for Systems Biology.

Best known for their immune system activity of engulfing and digesting microbes, damaged cells and foreign substances, macrophages are found in tissues throughout the body and have recently been shown to have additional functions related to the tissues where they reside. While macrophages are required for healing damaged tissues in the heart, their presence within healthy heart muscle suggests a role in normal heart function. Nahrendorf's study was designed to investigate their potential role in transmitting and coordinating the electrical signals that stimulate heart muscle contraction.

Initial experiments in mice revealed that cardiac macrophages are more abundant in the atrioventicular (AV) node -- a key structure connecting the atria (upper chambers) to the ventricles (lower chambers) -- which coordinates contraction timing for the upper and lower chambers. Similarly high concentrations of macrophages were found in AV nodes from human autopsy samples. Subsequent animal experiments found that macrophages connect to heart muscle cells via gap junctions -- pore-like structures known to coordinate heart muscle contractions -- and that the shifts in electric charge that carry the conduction signal are synchronized between macrophages and adjacent heart muscle cells called myocytes.

Mice lacking a key gap junction protein showed an abnormal slowing of signal conduction through the AV node, and a complete depletion of tissue macrophages led to the development of AV block -- a delay in conduction between the atria and ventricles that, in human patients, requires pacemaker implantation. Overall, the findings suggest that cardiac macrophages are essential participants in the cardiac conduction system and that changes in their numbers or properties may contribute to heart rhythm abnormalities.

Nahrendorf and his colleagues are continuing to explore the role of macrophages in both the healthy heart and in common disorders of signal conduction. He adds that the cells' natural propensity to surround and take up materials for disposal could be used to induce macrophages to ingest drugs carried on nanoparticles.
-end-
The co-lead authors of the Cell paper are Maarten Hulsmans, PhD, of the MGH Center for Systems Biology and Sebastian Clauss, MD, and Ling Xiao, PhD, of the MGH Cardiovascular Research Center. Additional co-authors include David Milan, MD, and Patrick Ellinor, MD, PhD, of the CVRC. Support for the study includes National Institutes of Health grants NS084863, HL128264, HL114477, HL117829, HL092577, HL105780, and HL096576. The MGH has filed a patent application covering the work described in this paper.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Macrophages Articles:

Identifying underlying causes of immune deficiencies that increase shingles risk
Varicella zoster virus can remain dormant for decades and reactivate to cause shingles.
Radiation therapy, macrophages improve efficacy of nanoparticle-delivered cancer therapy
Massachusetts General Hospital investigators report finding finding how appropriately timed radiation therapy can significantly improve the delivery of cancer nanomedicines by attracting macrophages to tumor blood vessels, which results in a transient 'burst' of nanoencapsulated drugs from capillaries into the tumor.
UK researchers identify macrophages as key factor for regeneration in mammals
The team's findings, published today in eLife, shed light on how immune cells might be harnessed to someday help stimulate tissue regeneration in humans.
Tumor-dwelling immune cells thwart cancer immunotherapy
Researchers have caught tumor-associated immune cells called macrophages in the act of stealing checkpoint inhibitor antibodies away from their intended T cell targets, and blocking this thievery led to improved therapeutic responses in tumor-bearing mice.
New chlamydia drug targets discovered using CRISPR and stem cells
Scientists at the Wellcome Trust Sanger Institute and their collaborators at the University of British Columbia have created an innovative technique for studying how chlamydia interacts with the human immune system.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Macrophages shown to be essential to a healthy heart rhythm
A Massachusetts General Hospital-led research team has found that -- in addition to their immune system role -- macrophages are also essential to the healthy functioning of the heart, helping conduct the electric signals that coordinate the heartbeat.
UNC researchers identify a new HIV reservoir
A UNC research team has identified a new cell in the body where HIV persists despite treatment.
Silence is golden -- Suppressing host response to Ebola virus may help to control infection
The Ebola virus causes a severe, often fatal illness when it infects the human body.
Scientists discover how obesity stops 'guardian immune cells' from doing their job
Special immune cells -- ILCs -- cannot function properly once obesity is established.

Related Macrophages Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".