Nav: Home

Penn researchers show brain stimulation restores memory during lapses

April 20, 2017

A team of neuroscientists at the University of Pennsylvania has shown for the first time that electrical stimulation delivered when memory is predicted to fail can improve memory function in the human brain. That same stimulation generally becomes disruptive when electrical pulses arrive during periods of effective memory function.

The research team included Michael Kahana, professor of psychology and principal investigator of the Defense Advanced Research Projects Agency's Restoring Active Memory program; Youssef Ezzyat, a senior data scientist in Kahana's lab; and Daniel Rizzuto, director of cognitive neuromodulation at Penn. They published their findings in the journal Current Biology.

This work is an important step toward the long-term goal of Restoring Active Memory, a four-year Department of Defense project aimed at developing next-generation technologies that improve memory function in people who suffer from memory loss. It illustrates an important link between appropriately timed deep-brain stimulation and its potential therapeutic benefits.

To get to this point, the Penn team first had to understand and decode signaling patterns that correspond to highs and lows of memory function.

"By applying machine-learning methods to electrical signals measured at widespread locations throughout the human brain," said Ezzyat, lead paper author, "we are able to identify neural activity that indicates when a given patient will have lapses of memory encoding."

Using this model, Kahana's team examined how the effects of stimulation differ during poor versus effective memory function. The study involved neurosurgical patients receiving treatment for epilepsy at the Hospital of the University of Pennsylvania, the Thomas Jefferson University Hospital, the Dartmouth-Hitchcock Medical Center, the Emory University Hospital, the University of Texas Southwestern, the Mayo Clinic, Columbia University, the National Institutes of Health Clinical Center and the University of Washington. Participants were asked to study and recall lists of common words while receiving safe levels of brain stimulation.

During this process, the Penn team recorded electrical activity from electrodes implanted in the patients' brains as part of routine clinical care. These recordings identified the biomarkers of successful memory function, activity patterns that occur when the brain effectively creates new memories.

"We found that, when electrical stimulation arrives during periods of effective memory, memory worsens," Kahana said. "But when the electrical stimulation arrives at times of poor function, memory is significantly improved."

Kahana likens it to traffic patterns in the brain: stimulating the brain during a backup restores the normal flow of traffic.

Gaining insight into this process could improve the lives of many types of patients, particularly those with traumatic brain injury or neurological diseases, such Alzheimer's. "Technology based on this type of stimulation," Rizzuto said, "could produce meaningful gains in memory performance, but more work is needed to move from proof-of-concept to an actual therapeutic platform."

This past November, the RAM team publicly released an extensive intracranial brain recording and stimulation dataset that included more than 1,000 hours of data from 150 patients performing memory tasks.
-end-


University of Pennsylvania

Related Memory Articles:

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
An immunological memory in the brain
Inflammatory reactions can change the brain's immune cells in the long term -- meaning that these cells have an 'immunological memory.' This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases.
Anxiety can help your memory
Anxiety can help people to remember things, a study from the University of Waterloo has found.
Pores with a memory
Whether for separation processes, photovoltaics, catalysis, or electronics, porous polymer membranes are needed in many fields.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.