Nav: Home

Macrophages conduct electricity, help heart to beat

April 20, 2017

Macrophages, immune cells known for their PAC-MAN-like ingestion of microbial intruders and biological waste, have a previously unrecognized role in helping the mammalian heart beat in rhythm. Massachusetts General Hospital researchers discovered that macrophages aggregate around central cardiac cells that regulate electrical impulses within the mouse heart, helping the cells conduct electricity. Mice that were genetically engineered to lack macrophages have irregular heartbeats, hinting that these immune cells may also play a role in heart disease. The findings appear April 20 in the journal Cell.

"This work opens up a completely new view on electrophysiology; now, we have a new cell type on the map that is involved in conduction," says senior author Matthias Nahrendorf, a systems biologist at Massachusetts General Hospital, Harvard Medical School. "Macrophages are famous for sensing their environment and changing their phenotype very drastically, so you can think about a situation where there is inflammation in the heart that may alter conduction, and we now need to look at whether these cells are causally involved in conduction abnormalities."

Researchers have known for decades that macrophages are in high abundance around inflamed or diseased hearts, but Nahrendorf's investigation began when he asked what the immune cells were doing in a healthy heart. After sending a mouse model depleted of macrophages for a heart MRI and electrocardiogram, the technician reported back that something was wrong; the mouse's heart was beating too slowly. Tests in a healthy rodent revealed a high density of resident macrophages at the heart's atrioventricular node, which passes electricity from the atria to the ventricles.

Nahrendorf showed the results to his colleagues, David Milan and Patrick Ellinor, both electrophysiologists at Massachusetts General Hospital, who responded by opening the doors to their labs. Together, the teams found that macrophages extend their cell membranes between cardiac cells and create pores, also called gap junctions, for the electrical current to flow through. The macrophages contribute by preparing the conducting heart cells for the next burst of electricity so conducting cells are able to keep up with a fast contraction rhythm.

"When we got the first patch clamp data that showed the macrophages in contact with cardiomyoctes were rhythmically depolarizing, that was the moment I realized they weren't insulating, but actually helping to conduct," Nahrendorf says. "This work was very exciting because it was an example of how team science can help to connect fields that are traditionally separated--in this case, immunology and electrophysiology."

The group will follow up by looking at whether macrophages are involved in common conduction abnormalities. There are also potential connections between macrophages and anti-inflammatory drugs, which are widely reported to help with heart disease. If macrophages do play a role in disease, the researchers say it can open up a new line of therapeutics, as these immune cells naturally consume foreign molecules in their presence and are easy to target as a result.
-end-
This work was funded in part by the National Institutes of Health. The General Hospital Corporation has filed a patent application based on the research.

Cell, Hulsmans, Clauss, and Xiao et al.: "Macrophages Facilitate Electrical Conduction in the Heart" http://www.cell.com/cell/fulltext/S0092-8674(17)30412-9

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Novel heart valve replacement offers hope for thousands with rheumatic heart disease
A novel heart valve replacement method is revealed today that offers hope for the thousands of patients with rheumatic heart disease who need the procedure each year.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
Americans are getting heart-healthier: Coronary heart disease decreasing in the US
Coronary heart disease is one of the leading causes of death in the United States.

Related Heart Disease Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".