Nav: Home

Light rays from a supernova bent by the curvature of space-time around a galaxy

April 20, 2017

An international research team led by Ariel Goobar at Stockholm University has detected for the first time multiple images from a gravitationally lensed Type Ia supernova. The new observations suggest promising new avenues for the study of the accelerated expansion of the Universe, gravity and distribution of dark matter in the universe.

Type Ia supernovae, nature's own "standard candles", have been used for many years by astronomers to measure cosmological distances. These studies led to the discovery of the accelerated expansion of the Universe, a sensational discovery that won the 2011 Nobel prize in Physics. Professor Ariel Goobar at the Department of Physics at Stockholm University was a member of the team led by one of the Nobel laureates, Saul Perlmutter.

An international team of physicists and astronomers led from Stockholm University has now seen, for the first time, the rare appearance of multiple images of the same exploding star dubbed iPTF16geu, which belongs to a class of supernovae known as Type Ia. The phenomenon, called strong gravitational lensing is a result of the intense warping of the supernova light by an intervening galaxy positioned between us and the star in near perfect alignment. In this special case, the supernova appeared magnified, but also multiplied. The new observations provide a promising new tool to test key cosmological theories about the accelerating expansion of the universe and the distribution of a mysterious substance known as dark matter.

Type Ia supernovae are abundant and frequently used by astronomers to accurately measure distances in the universe. Gravitational lensing - the curving of space due to gravity - has also been observed many times since the early 20th century when it was predicted by Einstein. Yet, imaging a gravitationally lensed Type Ia supernova had proven formidably difficult, until now.

"Resolving, for the first time, multiple images of a strongly lensed "standard candle" supernova is a major breakthrough. We can measure the light focusing power of gravity more accurately than ever before, and probe physical scales that may have seemed out of reach until now," says Ariel Goobar, Professor at Oskar Klein Centre, Stockholm University and a lead author of the study, published today in the journal Science.

Goobar and his group are partners in two Caltech-led international scientific collaborations-- iPTF (intermediate Palomar Transient Factory) and GROWTH (Global Relay of Observatories Watching Transients Happen). The iPTF takes advantage of the Palomar Observatory and its unique capabilities to scan the skies and discover, in near real time, fast-changing cosmic events such as supernovae. GROWTH manages a global network of researchers and telescopes that can swiftly perform follow-up observations to study these transient events in detail.

Within two months of detection, the team observed iPTF16geu supernova with NASA/ESA Hubble Space Telescope, and the adaptive-optics instruments on the Keck Observatory atop Mauna Kea, Hawaii, and the VLT telescopes in Chile. Apart from producing a striking visual effect, capturing the image of the strongly lensed Type Ia supernova such as iPTF16geu is extremely useful scientifically. Astronomers can now measure very accurately how much time it takes for the light from each of the multiple images of the supernova to reach us. The difference in the time of arrival can then be used to estimate with a high precision the expansion rate of the universe known as the Hubble constant. Currently, the different methods to measure the Hubble constant produce slightly different results but even these small changes can result in significantly different scenarios for the predicted evolution and expansion of the universe.

The study of iPTF16geu is already delivering interesting results. Based on current knowledge of supernovae and gravitational lensing, observing an event such as iPTF16geu is rather improbable. Moreover, using data from Keck and Hubble the team finds that the lensing galaxy needs a great deal of substructure to account for the observed differences in the four supernova images, and the total lens magnification.

This may introduce new questions about the way matter clumps in the universe and challenge astronomers' understanding of gravitational lensing at small scales.

"The discovery of iPTF16geu is truly like finding a somewhat weird needle in a haystack. It reveals to us a bit more about the universe, but mostly triggers a wealth of new scientific questions. That's why I love science and astronomy" - says Rahman Amanullah, a postdoctoral fellow at Stockholm University and a co-author on the study.
-end-
Further information

Ariel Goobar, Department of Physics, Stockholm University. Phone: +46739845475, e-mail: ariel@fysik.su.se

Images


https://www.dropbox.com/s/sbwdrtv5xsjlccz/16geu_illustration.jpg?dl=0

https://www.dropbox.com/s/u088sd0093a85qd/16geu_ptf_sdss_hst_keck_zoom.pdf?dl=0

https://www.dropbox.com/s/q51a98fdtjl397h/16geu_sdss_hst_keck.pdf?dl=0

Please contact Professor Ariel Goobar or Stockholm University Press Office (press@su.se) regarding captions and images.

The study, titled "iPTF16geu: A multiply-imaged gravitationally lensed Type Ia supernova" is published in the journal Science,. Eleven of the authors are researcher at Stockholm University.

The intermediate Palomar Transient Factory (iPTF) is based at the Palomar Observatory which is operated by the California Institute of Technology.

GROWTH is a partnership of 13 international academic institutions who jointly pursue science at the frontier of time-domain astronomy.

Stockholm University

Related Dark Matter Articles:

Scientists shed light on mystery of dark matter
Nuclear physicists at the University of York are putting forward a new candidate for dark matter -- a particle they recently discovered called the d-star hexaquark.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
DNA repeats -- the genome's dark matter
First direct analysis of pathogenic sequence repeats in the human genome.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
New hunt for dark matter
Dark matter is only known by its effect on massive astronomical bodies, but has yet to be directly observed or even identified.
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.