Nav: Home

Using venomous proteins to make insect milkshakes

April 20, 2017

RIVERSIDE, Calif. (http://www.ucr.edu) -- Nematodes are microscopic worms that fall into an often ignored corner of the animal kingdom. While many of them are parasitic, meaning they live inside other organisms, they also help control diseases in humans and kill insects that damage agricultural crops.

It's those beneficial qualities of nematodes that draw the focus of Adler Dillman, an assistant professor at the University of California, Riverside.

In a just-published paper in the journal PLOS Pathogens, Dillman and several collaborators found that nematodes secrete a deadly cocktail of proteins to kill many insects that damage crops. The finding overturns a long-held belief that it is exclusively bacteria, working in conjunction with nematodes, that kill the insects.

"It's all really science fiction-like," Dillman said. "These microscopic nematodes crawl into the host, poop out toxic bacteria and then spit out the venom and turn the host into an insect milkshake."

Nematodes have adapted to live in nearly every ecosystem, including oceans, lakes, soils, polar and tropic zones and at all elevations. They are round but don't have segments like earthworms. They are generally 0.1- to 2.5-millimeters long and are thought to represent 80 percent of animals on Earth.

The research by Dillman and his collaborators focused on Steinernema carpocapsae, a well-studied nematode that is known to kill more than 250 insect pests that attack plants such as peaches, tomatoes, corn, sweet potatoes, oranges, and pine trees. S. carpocapsae can be bought at online gardening stores and are marketed as an organic gardening solution. One web site sells 10 million of them for $37.98.

S. carpocapsae belongs to a group of insect-parasitic nematodes known as entomopathogenic nematodes. These differ from other insect parasites because they kill their hosts quickly, within a day or two, and associate with bacteria to facilitate their parasitic lifestyle.

These nematodes are born, stop development and only restart development once they infect a host insect. Little is known about the early stages of parasitism and how these parasites initiate the parasitic phase of their life cycle and reinitiate development. The research by Dillman and his collaborators helps to unravel that mystery.

The PLOS Pathogens paper outlines a new method the researchers developed to work with the nematodes when they are outside the insect host they parasitize, a common challenge when researching parasites.

The researchers were able to collect the venomous proteins from the nematodes after exposure to insect tissue in flasks in the lab. They found the protein mixture was highly toxic to multiple species of insects including adult fruit flies (Drosophila melanogaster), which are commonly used in scientific experiments.

In addition, they used RNA sequencing technology to compare the expression of genes in nematodes from inside the insect host and those exposed to insect tissue in flasks. They found the gene expression profiles were similar, demonstrating the validity of the model they developed to work with nematodes outside an insect host.

Finally, they then identified 472 proteins presumably involved in parasitism. These proteins will serve as a foundation for future studies that have agricultural and medical applications.

On the agriculture side, researchers are hopeful that they will find new insecticidal compounds that can be used to control insect pests around the world.

On the human medicine side, nematodes have recently been shown to help control auto-immune diseases, such as Celiac disease, irritable bowel syndrome, and Crohn's disease. Future research by Dillman and his collaborators could lead to better methods involving nematode molecules to combat those diseases.

The findings are especially relevant for closely related human parasites such as threadworm (Strongyloides stercoralis), which infects an estimated 100 million people globally.

The PLOS Pathogens paper is called "Activated entomopathogenic nematode infective juveniles release lethal venom proteins."
-end-


University of California - Riverside

Related Bacteria Articles:

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.