Nav: Home

Study shows hearing tests miss common form of hearing loss

April 20, 2017

BUFFALO, N.Y. - Traditional clinical hearing tests often fail to diagnose patients with a common form of inner ear damage that might otherwise be detected by more challenging behavioral tests, according to the findings of a University at Buffalo-led study published in the journal Frontiers in Neuroscience.

This type of "hidden hearing loss" paradoxically presents itself as essentially normal hearing in the clinic, where audiograms -- the gold-standard for measuring hearing thresholds -- are typically conducted in a quiet room.

The reason some forms of hearing loss may go unrecognized in the clinic is that hearing involves a complex partnership between the ear and the brain. It turns out that the central auditory system can compensate for significant damage to the inner ear by turning up its volume control, partially overcoming the deficiency, explains Richard Salvi, SUNY Distinguished Professor of Communicative Disorders and Sciences and director of UB's Center for Hearing and Deafness, and the study's lead author.

"You can have tremendous damage to inner hair cells in the ear that transmit information to the brain and still have a normal audiogram," says Salvi. "But people with this type of damage have difficulty hearing in certain situations, like hearing speech in a noisy room. Their thresholds appear normal. So they're sent home."

To understand why a hearing test isn't identifying a hearing problem it's necessary to follow the auditory pathway as sound-evoked neural signals travel from the ear to the brain.

About 95 percent of sound input to the brain comes from the ear's inner hair cells.

"These inner hair cells are like spark plugs in an 8-cylinder engine," says Salvi. "A car won't run well if you remove half of those spark plugs, but people can still present with normal hearing thresholds if they've lost half or even three-quarters of their inner hair cells."

Ear damage reduces the signal that goes the brain. That results in trouble hearing, but that's not what's happening here, because the brain "has a central gain control, like a radio, the listener can turn up the volume control to better hear a distant station." Salvi says.

Sound is converted to neural activity by the inner hair cells in the auditory part of the ear, called the cochlea.

Sound-evoked neural activity then travels from the cochlea to the auditory nerve and into the central auditory pathway of the brain. Halfway up the auditory pathway the information is relayed into a structure known as the inferior colliculus, before finally arriving at the auditory cortex in the brain, where interpretation of things like speech take place.

For people with inner hair cell loss, sound is less faithfully converted to neural activity in the cochlea. However, this weakened sound-evoked activity is progressively amplified as it travels along the central auditory pathway to the inferior colliculus and onward. By the time it reaches the auditory cortex, things are hyperactive because the brain has recognized a problem.

"Once the signal gets high enough to activate a few neurons it's like your brain has a hearing aid that turns up the volume," says Salvi.

It's not clear how many people might have this type of hearing loss, but Salvi says it is a common complaint to have difficulty hearing in noisy environments as people get older. The perceptual consequences include apparently normal hearing for tests administered in quiet settings, but adding background noise often results in deficits in detecting and recognizing sounds.

"That's why the way we're measuring hearing in the clinic may not be adequate for subtle forms of hearing loss," says one of the study's co-authors, Benjamin Auerbach, a postdoctoral fellow at UB's Center for Hearing and Deafness.

In addition to informing how hearing tests are conducted, Auerbach suggests that this compensation might be causing or contributing to other auditory perceptual disorders such as tinnitus, often described as a ringing in the ears, or hyperacusis, a condition that causes moderate everyday sounds to be perceived as intolerably loud.

"If you have excessive gain in the central auditory system, it could result in the over-amplification of sound or even make silence sound like noise," says Auerbach.
-end-


University at Buffalo

Related Hearing Loss Articles:

Victorian child hearing-loss databank to go global
A unique databank that profiles children with hearing loss will help researchers globally understand why some children adapt and thrive, while others struggle.
Hearing loss, dementia risk in population of Taiwan
A population-based study using data from the National Health Insurance Research Database of Taiwan suggests hearing loss is associated with risk of dementia.
Mice reveal 38 new genes involved in hearing loss
Multiple new genes involved in hearing loss have been revealed in a large study of mouse mutants by researchers from the Wellcome Sanger Institute, King's College London, and colleagues.
New contributor to age-related hearing loss identified
Researchers have discovered a new potential contributor to age-related hearing loss, a finding that could help doctors identify people at risk and better treat the condition.
Exploring the connection between hearing loss and cognitive decline
A new study led by investigators at Brigham and Women's Hospital adds to a growing body of evidence that hearing loss is associated with higher risk of cognitive decline.
Signs of memory problems could be symptoms of hearing loss instead
Older adults concerned about displaying early symptoms of Alzheimer's disease should also consider a hearing check-up, suggest recent findings.
Hearing loss is a risk factor for premature death
A new study links hearing loss with an increased risk for mortality before the age of 75 due to cardiovascular disease.
Study points to possible new therapy for hearing loss
Researchers have taken an important step toward what may become a new approach to restore the hearing loss.
Are portable music players associated with hearing loss in children?
The effect of portable music players on the hearing of children is unclear.
New study shows hope for hearing loss
USC and Harvard scientists found a new way to fix cells deep inside the ear, which could help millions of people who suffer hearing loss.
More Hearing Loss News and Hearing Loss Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.