Nav: Home

JNeurosci: Highlights from the April 19 issue

April 20, 2017

Check out these newsworthy studies from the April 19, 2017, issue of JNeurosci. Media interested in obtaining the full text of the studies should contact media@sfn.org.

Caffeine, Lack of Sleep Enhance Circadian Rhythm Reset in Day-Active Rats

An organism's daily behaviors and bodily activities are timed in a roughly 24-hour cycle called a circadian rhythm, which in mammals is regulated by a master clock in the brain's hypothalamus. Although the circadian rhythm is primarily reset by light -- synchronizing the organism to the time of day in its environment -- studies in nocturnal animals have shown that these rhythms can also be reset when animals are active during a time they are usually sleeping. However, it is unknown whether this applies to animals that are active during the day (diurnal). In this study, researchers show that depriving diurnal rats of sleep or treating them with caffeine enhanced the effect of light in shifting the timing of their wheel running, a daily activity the scientists used to determine shifts in circadian rhythm. In addition, sleep deprivation alone in the early part of the period when they would typically be sleeping also shifted the timing of this activity. Understanding how the timing and quality of sleep as well as how stimulants like caffeine affect circadian rhythms could help to inform therapies designed to deliver treatments at optimal times of day to improve efficacy and reduce side effects.

Corresponding author: Pawan Kumar Jha, kj.pawan@gmail.com

Decoding Monkeys' Brain Signals for Grasping Objects

Brain-computer interfaces (BCI) can decode information from regions of the brain that plan and execute movement, and this information can then be used to operate prosthetic devices. These artificial systems are not yet able to emulate fine control of arm and hand actions, such as the ability to grasp objects of different sizes and shapes. In a new study, researchers recorded the activity of 79 neurons in the dorsomedial visual stream (a part of the visual cortex involved in both vision and movement) of two macaques as they viewed, reached for, and grasped five objects requiring different grips. The researchers found that their decoding algorithm was able to predict different types of grasps from the recorded activity with good accuracy, suggesting that this brain region may be an important new source of grasping signals for BCI applications in human patients.

Corresponding author: Patrizia Fattori, patrizia.fattori@unibo.it
-end-
The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 37,000 basic scientists and clinicians who study the brain and nervous system.

Society for Neuroscience

Related Caffeine Articles:

Caffeine boosts problem-solving ability but not creativity, study indicates
Want to boost creativity? Caffeine may not be the way to go according to a news study by U of A psychologist Darya Zabelina.
Using caffeine as a tool to study information processing
Researchers are using caffeine to study how the brain processes information, and a new study shows the effectiveness of this approach.
More electronic device use tied to more sugar and caffeine in teens
The study, published today in PLOS ONE, found that more than 27% of teens exceed recommended sugar intake and 21% exceed recommended caffeine from soda and energy drinks.
Too much caffeine during pregnancy may damage baby's liver
Having too much caffeine during pregnancy may impair baby's liver development and increase the risk of liver disease in adulthood, according to a study published in the Journal of Endocrinology.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
Caffeine on the mind? Just seeing reminders of coffee can stimulate our brain
A new University of Toronto study finds that just seeing reminders of coffee can arouse us, causing our minds to be more alert and attentive.
More caffeine from coffee associated with decreased rosacea risk
Consuming caffeine from coffee but not from other foods (tea, soda and chocolate) was associated with less risk of rosacea, a common chronic inflammatory skin disease where the skin appears red and flushed.
Caffeine from four cups of coffee protects the heart with the help of mitochondria
A new study shows that a caffeine concentration equivalent to four cups of coffee promotes the movement of a regulatory protein into mitochondria, enhancing their function and protecting cardiovascular cells from damage.
New report suggests three main groups of caffeine sensitivity
Coffee drinkers fall into one of three major groups based on their caffeine sensitivity, according to physician and author Dr J.W.
More Caffeine News and Caffeine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.