Nav: Home

Effects of alcoholism on the brain's reward system may be different in women than in men

April 20, 2017

A collaborative study between researchers at Massachusetts General Hospital (MGH) and Boston University School of Medicine (BUSM) has found evidence implying that alcoholism may have different effects on the reward system in the brains of women than it does in men.

In their paper published in Psychiatry Research Neuroimaging, the team reports that reward system structures are larger in alcoholic women than in nonalcoholic women, and their report confirmed earlier studies that found the same structures were smaller in alcoholic men than in nonalcoholic men. The study, which enrolled currently abstinent individuals with a history of long-term alcohol use disorder, also found a negative association between the length of sobriety and the size of the fluid-filled ventricles in the center of the brain, suggesting possible recovery of the overall brain from the effects of alcoholism

"Until now, little has been known about the volume of the reward regions in alcoholic women, since all previous studies have been done in men," says co-author Gordon Harris, PhD, of the 3D Imaging Service and the Center for Morphometric Analysis in the Martinos Center for Biomedical Imaging at MGH. "Our findings suggest that it might be helpful to consider gender-specific approaches to treatment for alcoholism."

The brain's reward system is a group of structures - including the amygdala and the hippocampus - that reinforce beneficial experiences, are involved in memory and complex decision-making and have been implicated in the development of substance use disorders. Since there are known difference between the psychological and behavioral profiles of women and men with alcoholism - women tend toward having higher levels of anxiety, while men are more likely to exhibit anti-social characteristics - the current study was designed to investigate whether the alcoholism-associated reward system differences previously observed in men would also be seen in women.

The study enrolled 60 participants with histories of long-term alcoholism - 30 women and 30 men - and an equivalent group of nonalcoholic volunteers. The alcoholic participants had been abstinent for time periods ranging from four weeks to 38 years. Participants completed detailed medical histories and neuropsychological assessments with the BUSM researchers before having MRI brain scans at the Martinos Center that were analyzed both in terms of the total brain and of the structures in the reward network.

Replicating the results of earlier studies, the average sizes of reward region structures of alcoholic men were 4.1 percent smaller than those of nonalcoholic men, but the average sizes of the same structures were 4.4 percent larger in alcoholic than in nonalcoholic women. While factors such as the duration and intensity of heavy drinking appeared to reinforce these gender-specific effects, the research team notes that the current study cannot determine whether these differences preceded or resulted from the development of alcoholism. Among participants with alcoholism - both women and men - each year of sobriety was associated with a 1.8 percent decrease in the size of the ventricles, suggesting recovery from the damaging effects of alcoholism on the brain.

"We're planning to take a more detailed look at the impact of factors such as the severity of drinking and the length of sobriety on specific brain structure, and hope to investigate whether the imaging differences seen in this and previous studies are associated with gender-based differences in motivational and emotional functions," says co-author Marlene Oscar-Berman, PhD, a professor of Psychiatry, Neurology, and Anatomy & Neurobiology at BUSM.
-end-
Harris is a professor of Radiology at Harvard Medical School. Kayle Sawyer of Oscar-Berman's BUSM team is lead and corresponding author of the Psychiatry Research Neuroimaging paper. Additional co-authors are Olivier Barthelemy, BUSM, and George Papadimitriou and Nikos Makris, MD, Martinos Center. Support for the study includes National Institute on Alcohol Abuse and Alcoholism grants R01-AA07112 and K05-AA00219, Department of Veterans Affairs grant I01-CX000326 , National Institute on Aging/National Institute of Mental Health grant R01-AG042512, National Center for Complementary and Integrative Health grant R21-AT008865; and National Center for Research Resources grant P41RR14075.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.