Unprecedented 3D images of live cells plus details of molecules inside

April 20, 2020

The insides of living cells can be seen in their natural state in greater detail than ever before using a new technique developed by researchers in Japan. This advance should help reveal the complex and fragile biological interactions of medical mysteries, like how stem cells develop or how to deliver drugs more effectively.

"Our system is based on a simple concept, which is one of its advantages," said Associate Professor Takuro Ideguchi from the University of Tokyo Research Institute for Photon Science and Technology. The results of Ideguchi's team were published recently in Optica, the Optical Society's research journal.

The new method also has the advantages of not needing to kill the cells, damage them with intense light, or artificially attach fluorescent tags to specific molecules.

The technique combines two pre-existing microscopy tools and uses them simultaneously. The combination of these tools can be thought of simply as like a coloring book.

"We gather the black-and-white outline of the cell and we virtually color in the details about where different types of molecules are located," said Ideguchi.

Quantitative phase microscopy gathers information about the black-and-white outline of the cell using pulses of light and measuring the shift in the light waves after they pass through a sample. This information is used to reconstruct a 3D image of the major structures inside the cell.

Molecular vibrational imaging provides the virtual color using pulses of midinfrared light to add energy to specific types of molecules. That extra energy causes the molecules to vibrate, which heats up their local surroundings. Researchers can choose to raise the temperature of specific types of chemical bonds by using different wavelengths of midinfrared light.

Researchers take a quantitative phase microscopy image of the cell with the midinfrared light turned off and an image with it turned on. The difference between those two images then reveals both the outline of major structures inside the cell and the exact locations of the type of molecule that was targeted by the infrared light.

Researchers refer to their new combined imaging method as biochemical quantitative phase imaging with midinfrared photothermal effect.

"We were impressed when we first observed the molecular vibrational signature characteristic of proteins, and we were further excited when this protein-specific signal appeared in the same location as the nucleolus, an intracellular structure where high amounts of proteins would be expected," said Ideguchi.

Ideguchi's team hopes their technique might allow researchers to determine the distribution of fundamental types of molecules inside single cells. The quantitative phase microscopy outline of major structures could be virtually colored in using different wavelengths of light to specifically target proteins, lipids (fats) or nucleic acids (DNA, RNA).

Currently, capturing one complete image can take 50 seconds or longer. Researchers are confident that they can speed up the process with simple improvements to their tools, including a higher-powered light source and a more sensitive camera.

Collaborators at Osaka University, other departments at the University of Tokyo and the Japan Science and Technology Agency also contributed to this research.
-end-
Research Article

M. Tamamitsu, K. Toda, H. Shimada, T. Honda, M. Takarada, K. Okabe, Y. Nagashima, R. Horisaki, T. Ideguchi. 20 April 2020. Label-free biochemical quantitative phase imaging with midinfrared photothermal effect. Optica. DOI: 10.1364/OPTICA.390186.

https://doi.org/10.1364/OPTICA.390186.

Related Links

Ideguchi Lab website: https://takuroideguchi.jimdo.com/

Graduate School of Science: https://www.s.u-tokyo.ac.jp/en/index.html

Research contact

Associate Professor Takuro Ideguchi
Institute for Photon Science and Technology, The University of Tokyo
Tel: +81-(0)3-5841-1026
Email: ideguchi@ipst.s.u-tokyo.ac.jp

Press officer contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-8654, JAPAN
Tel: +81-080-9707-8178
Email: press-releases.adm@gs.mail.u-tokyo.ac.jp

University of Tokyo

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.