Type 2 diabetes: Too much glucagon when α-cells become insulin resistant

April 20, 2020

Patients with type 2 diabetes secrete not only too little insulin but also too much glucagon, which contributes to poor blood glucose control. A new study from Uppsala University suggests that this is because the glucagon-secreting α-cells have become resistant to insulin.

In healthy individuals, insulin signals the body to absorb glucose, thereby reducing the sugar in the blood and providing energy to tissues. In patients with type 2 diabetes this mechanism fails, because the glucose-absorbing tissues become resistant to insulin and because too little of the hormone is released into the blood. This leads to elevated blood glucose and long-term complications that often become disabling or even life-threatening.

Often, type 2 diabetics also have elevated levels of glucagon, another hormone that is released by the pancreas. Glucagon counteracts the effects of insulin by instructing the liver to release stored glucose into the blood. After a meal, the release of glucagon is normally blocked to prevent excessive production of glucose by the liver. When this fails in diabetic patients, too much glucagon contributes to a vicious cycle that exacerbates the already high blood sugar levels of diabetics. Despite this vital function of glucagon, relatively little is known about how its release is regulated. Using advanced microscopy techniques, a team led by Omar Hmeadi in Sebastian Barg's research group at Uppsala University now adds insight into how glucagon-producing α-cells are controlled by glucose.

As expected, the experiments showed that glucagon is secreted during periods of low glucose, while high levels of the sugar efficiently block its release. However, in α-cells of type 2 diabetics this regulation was disturbed and high glucose no longer blocked the release of glucagon. To find out why, Hmeadi and colleagues isolated the α-cells and separated them from their tissue context in the pancreas. Surprisingly, the cells now behaved in a 'diabetic' manner and continued to secrete glucagon even when glucose was elevated.

The reason, Hmeadi explains, is that α-cells are normally blocked by insulin and other hormones that are released at high blood glucose from nearby cells. When the cells are separated from each other, this cell-to-cell communication is lost and glucagon secretion proceeds even when it should not. But why do the isolated α-cells behave as if they were diabetic? It turns out that the α-cells in type 2 diabetes become resistant to insulin, much like liver, fat and muscle. The result is that glucagon release is no longer inhibited during the mealtime rise in blood glucose, and this leads to the elevated levels of the hormone in type 2 diabetes.

The researchers hope that the findings will contribute to a better understanding of human type 2 diabetes and guide the development of better treatment strategies.
-end-


Uppsala University

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.