Nav: Home

Wind turbine noise affects dream sleep and perceived sleep restoration

April 20, 2020

Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows. A night of WTN resulted in delayed and shortened REM sleep.

Knowledge of how sleep is affected by WTN has been limited to date. Research involving physiological study of its impact using polysomnography, the top-ranking method of sleep recording, is lacking.

Studies carried out in the Sound Environment Laboratory at the Department of Occupational and Environmental Medicine in Gothenburg are adding new knowledge in the field. Polysomnography involves using electrodes attached to the head and chest to record brain activity, eye movement, heart rate, etc. during sleep.

Of the 50 participants in the new study, 24 had been living within one kilometer of one or more wind turbines for at least one year. The other 26, the reference group, did not live near wind turbines.

Kerstin Persson Waye, Professor of Environmental Medicine at Sahlgrenska Academy, University of Gothenburg, is the corresponding author in the study, published in the journal Sleep.

"We wanted to find out whether people exposed to noise from wind turbines over time become more sensitive or more habituated to WTN, so that their sleep may be affected differently than someone who doesn't live near any turbines," she says.

The participants spent three nights in the Sound Environment Laboratory, one for acclimatization and then, in a random order, one quiet night and one with four separate periods of WTN. The sounds that were used were modeled based on outdoor measurements from several wind turbines, and was filtered to correspond with the sound insulation of a typical Swedish wooden house. Exposure was further modeled, to correspond to sleeping with a closed window and window ajar respectively.

The sounds were chosen to represent relatively unfavorable conditions, with a slightly higher average outdoor noise level than is currently permitted in Sweden. This level corresponded, however, with a low indoor noise level -- below the levels at which sleep had previously been found to be affected by, for example, traffic noise.

During the night with WTN, according to the physiological measures, the participants spent an average of 11.1 minutes less in REM sleep, which they entered 16.8 minutes later, than during the quiet night. The proportion of time they spent in REM sleep was 18.8% for the night with WTN, compared with 20.6% for the quiet night -- a small but statistically significant difference that, moreover, was independent from habituation to WTN.

There were no statistically significant differences in other sleep parameters, such as number of awakenings, total sleep time, time in deeper (non-REM) sleep stages or fragmentation of deep sleep, and heart rate. However, rhythmic sound variations appeared to disturb sleep, especially with closed windows.

Besides the physiologically based measurements, participants filled out a questionnaire on their sleep quality and how tired or rested they felt. Both groups reported that they slept worse during nights with WTN.

The study gave no indication of the habituation effect or increased sensitivity in the participants exposed to wind turbines in their home environment. However, the group that lived close to wind turbines reported worse sleep overall, even during the quiet night.

"Sleep disturbance, a negative health effect according to the World Health Organization (WHO), can in itself contribute to chronic diseases. However, we can't draw conclusions from this study on long-term health impact. Further studies should, if possible, investigate sleep in people's home environments and include longer exposure time," Kerstin Persson Waye concludes.
-end-
Title: A laboratory study on the effects of wind turbine noise on sleep: results of the polysomnographic WiTNES study; https://doi.org/10.1093/sleep/zsaa046

University of Gothenburg

Related Sleep Articles:

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.
To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.
Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.
'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.
Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.
Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.
Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.
Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?
Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.
Kicking, yelling during sleep? Study finds risk factors for violent sleep disorder
Taking antidepressants for depression, having post-traumatic stress disorder or anxiety diagnosed by a doctor are risk factors for a disruptive and sometimes violent sleep disorder called rapid eye movement (REM) sleep behavior disorder, according to a study published in the Dec.
More Sleep News and Sleep Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.