Mind over body: The search for stronger brain-computer interfaces

April 20, 2020

When people suffer debilitating injuries or illnesses of the nervous system, they sometimes lose the ability to perform tasks normally taken for granted, such as walking, playing music or driving a car. They can imagine doing something, but the injury might block that action from occurring.

Brain-computer interface systems exist that can translate brain signals into a desired action to regain some function, but they can be a burden to use because they don't always operate smoothly and need readjustment to complete even simple tasks.

Researchers at the University of Pittsburgh and Carnegie Mellon University are working on understanding how the brain works when learning tasks with the help of brain-computer interface technology. In a set of papers, the second of which was published today in Nature Biomedical Engineering, the team is moving the needle forward on brain-computer interface technology intended to help improve the lives of amputee patients who use neural prosthetics.

"Let's say during your work day, you plan out your evening trip to the grocery store," said Aaron Batista, associate professor of bioengineering in Pitt's Swanson School of Engineering. "That plan is maintained somewhere in your brain throughout the day, but probably doesn't reach your motor cortex until you actually get to the store. We're developing brain-computer interface technologies that will hopefully one day function at the level of our everyday intentions."

Batista, Pitt postdoctoral research associate Emily Oby and the Carnegie Mellon researchers have collaborated on developing direct pathways from the brain to external devices. They use electrodes smaller than a hair that record neural activity and make it available for control algorithms.

In the team's first study, published last June in the Proceedings of the National Academy of Sciences, the group examined how the brain changes with the learning of new brain-computer interface skills.

"When the subjects form a motor intention, it causes patterns of activity across those electrodes, and we render those as movements on a computer screen. The subjects then alter their neural activity patterns in a manner that evokes the movements that they want," said project co-director Steven Chase, a professor of biomedical engineering at the Neuroscience Institute at Carnegie Mellon.

In the new study, the team designed technology whereby the brain-computer interface readjusts itself continually in the background to ensure the system is always in calibration and ready to use.

"We change how the neural activity affects the movement of the cursor, and this evokes learning," said Pitt's Oby, the study's lead author. "If we changed that relationship in a certain way, it required that our animal subjects produce new patterns of neural activity to learn to control the movement of the cursor again. Doing so took them weeks of practice, and we could watch how the brain changed as they learned."

In a sense, the algorithm "learns" how to adjust to the noise and instability that is inherent in neural recording interfaces. The findings suggest that the process for humans to master a new skill involves the generation of new neural activity patterns. The team eventually would like this technology to be used in a clinical setting for stroke rehabilitation.

Such self-recalibration procedures have been a long-sought goal in the field of neural prosthetics, and the method presented in the team's studies is able to recover automatically from instabilities without requiring the user to pause to recalibrate the system by themselves.

"Let's say that the instability was so large such that the subject was no longer able to control the brain-computer interface," said Yu. "Existing self-recalibration procedures are likely to struggle in that scenario, whereas in our method, we've demonstrated it can in many cases recover from even the most dramatic instabilities."
Both research projects were performed as part of the Center for the Neural Basis of Cognition. This cross-institutional research and education program leverages the strengths of Pitt in basic and clinical neuroscience and bioengineering with those of Carnegie Mellon in cognitive and computational neuroscience.

Other Carnegie Mellon collaborators on the projects include co-director Byron Yu, professor of electrical and computer engineering and biomedical engineering, and also postdoctoral researchers Alan Degenhart and William Bishop, who led the conduct of the research.

University of Pittsburgh

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.