Nav: Home

Numerical simulations shed new light on early universe

April 21, 2016

Innovative multidisciplinary research in nuclear and particle physics and cosmology has led to the development of a new, more accurate computer code to study the early universe. The code simulates conditions during the first few minutes of cosmological evolution to model the role of neutrinos, nuclei and other particles in shaping the early universe.

Anticipating precision cosmological data from the next generation of "Extremely Large" telescopes, the BURST code developed by scientists at Los Alamos National Laboratory in collaboration with colleagues at University of California San Diego, "promises to open up new avenues for investigating existing puzzles of cosmology," says Los Alamos physicist Mark Paris of the Nuclear and Particle, Astrophysics and Cosmology group. "These include the nature and origin of visible matter and the properties of the more mysterious 'dark matter' and 'dark radiation.' "

"The BURST computer code allows physicists to exploit the early universe as a laboratory to study the effect of fundamental particles present in the early universe," Paris explains. "Our new work in neutrino cosmology allows the study of the microscopic, quantum nature of fundamental particles--the basic, subatomic building blocks of nature--by simulating the universe at its largest, cosmological scale," said Paris.

"The frontiers of fundamental physics have traditionally been studied with particle colliders, such as the Large Hadron Collider at CERN, by smashing together subatomic particles at great energies," says UCSD physicist George Fuller, who collaborated with Paris and other staff scientists at Los Alamos to develop the novel theoretical model. BURST brings a new dimension in simulations. "Our 'self-consistent' approach, achieved for the first time by simultaneously describing all the particles involved, increases the precision of our calculations. This allows us to investigate exotic fundamental particles that are currently the subject of intense theoretical speculation."

The new theoretical work has been recognized by Physical Review D editors as an Editors' Suggestion, a category reserved for "a small fraction of papers, which we judge to be particularly important, interesting, and well written." It will appear in the late April 2016 issue.

The research is driven by several mission goals of Los Alamos's Nuclear and Particle Futures research pillar in basic and applied nuclear science. According to Paris, "The early universe is becoming such a tightly constrained environment with increasingly good measurements that we can test our descriptions of microscopic quantum physics, such as nuclear cross sections, to high accuracy." These cross sections are important for Los Alamos' nuclear data needs that feed into applications in nuclear energy, safety and security.

A few seconds after the Big Bang, the universe was composed of a thick, 10-billion degree "cosmic soup" of subatomic particles. As the hot universe expanded, these particles' mutual interactions caused the universe to behave as a cooling thermonuclear reactor. This reactor produced light nuclei, such as hydrogen, helium, and lithium, found in the universe today. And the amounts of the light nuclei created depend on what other particles--such as neutrinos and perhaps their exotic cousins, "sterile" neutrinos--comprise the "soup'" and how they interact with each other.

"Neutrinos are very interesting--they're the second most abundant particle in the universe after photons yet we still have much to learn about them," commented Evan Grohs, who earned his Ph.D. through UCSD for the work, while working on the project in the Center for Space and Earth Sciences at Los Alamos. "By comparing our calculations with cosmological observables, such as the deuterium abundance," says Grohs, "we can use our BURST computer code to test theories regarding neutrinos, along with other--even less understood--particles. It can be difficult to test these theories in terrestrial labs, so our work provides a window into an otherwise inaccessible area of physics."

This research has become possible only recently with the advent of astronomers' precision measurements of the amounts of nuclei present in the early universe. These measurements were made with "Very Large" telescopes, which are about 10-meters wide. The next generation of "Extremely Large" telescopes, 30-meters across, are currently under construction.

"With coming improvements in cosmological observations, we expect our BURST computer code to be useful for many years to come," said Paris. Improvements in BURST are planned that will exploit the precision cosmological observations to reveal even more exotic physics such as the nature of dark matter and dark radiation. A complete understanding of dark matter, which comprises about a quarter of the mass in the universe, is currently lacking, Paris noted.
-end-
Ongoing support for the project is provided by the National Science Foundation at UCSD and the Laboratory Directed Research and Development program through the Center for Space and Earth Sciences (formerly the Institute for Geophysics, Planetary Physics and Signatures) at Los Alamos. Supercomputing resources on the TriLab Linux Capacity Cluster systems at Los Alamos National Laboratory were provided through a Los Alamos Institutional Computing grant.

Publication: Physical Review D, "Neutrino energy transport in weak decoupling and Big Bang Nucleosynthesis," by E. Grohs, G.M. Fuller, C.T. Kishimoto, M.W. Paris, A. Vlasenko

DOE/Los Alamos National Laboratory

Related Dark Matter Articles:

Does dark matter annihilate quicker in the Milky Way?
Researchers at the Tata Institute of Fundamental Research in Mumbai have proposed a theory that predicts how dark matter may be annihilating much more rapidly in the Milky Way, than in smaller or larger galaxies and the early Universe.
Origin of Milky Way's hypothetical dark matter signal may not be so dark
A mysterious gamma-ray glow at the center of the Milky Way is most likely caused by pulsars.
A new look at the nature of dark matter
A new study suggests that the gravitational waves detected by the LIGO experiment must have come from black holes generated during the collapse of stars, and not in the earliest phases of the Universe.
Dark matter may be smoother than expected
Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought.
Supercomputer comes up with a profile of dark matter
In the search for the mysterious dark matter, physicists have used elaborate computer calculations to come up with an outline of the particles of this unknown form of matter.
Mapping the 'dark matter' of human DNA
Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome.
Reconciling dwarf galaxies with dark matter
Dwarf galaxies are enigmas wrapped in riddles. Although they are the smallest galaxies, they represent some of the biggest mysteries about our universe.
Did gravitational wave detector find dark matter?
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves.
Dark matter does not contain certain axion-like particles
Researchers at Stockholm University are getting closer to corner light dark-matter particle models.
SDU researchers present a new model for what dark matter might be
There are indications that we might never see the universe's mysterious dark matter.

Related Dark Matter Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".