Murine models of arrhythmogenic cardiomyopathy benefit from GSK3β inhibition

April 21, 2016

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease that results from mutations in genes that encode components of the cardiac desmosome, which forms the junction between cardiac muscle and the epithelium. Patients with ACM have an increased risk of sudden death due to the breakdown of the muscle wall of the heart with age. A previous chemical screen in a zebrafish ACM model identified a glycogen synthase kinase 3β (GSK3β) inhibitor (SB2) that reversed disease. In this issue of JCI Insight, investigators led by Jeffrey Saffitz of Harvard Medical School and Daniel Judge of John's Hopkins School of Medicine examined the effects of the GSK3β inhibitor SB2 in two murine models of ACM. SB2 improved cardiac function, reduced fibrosis and inflammation, and improved survival in both ACM models. In cardiac cells from healthy mice, GSK3β was in the cytosol. However, GSK3β localized to intercellular junctions in mice with ACM. The same GSK3β distribution patterns were also present in cardiac cells from healthy individual and patients with ACM. The results of this study provide further evidence that GSK3β inhibition has potential as a therapeutic strategy for treating ACM.
TITLE: Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy

Johns Hopkins University School of Medicine

Jeffrey E. Saffitz
Harvard Medical School

View this article at:

JCI Insight is the newest publication from the American Society of Clinical Investigation, a nonprofit honor organization of physician-scientists. JCI Insight is dedicated to publishing a range of translational biomedical research with an emphasis on rigorous experimental methods and data reporting. All articles published in JCI Insight are freely available at the time of publication. For more information about JCI Insight and all of the latest articles go to

JCI Journals

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to